Modelling Trait-dependent Speciation with Approximate Bayesian Computation

Phylogeny is the field of modelling the temporal discrete dynamics of speciation. Complex models can nowadays be studied using the Approximate Bayesian Computation approach which avoids likelihood calculations. The fields progression is hampered by the lack of robust software to estimate the numerou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT 2019, Vol.12 (1), p.25
Hauptverfasser: Bartoszek, K., Liò, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phylogeny is the field of modelling the temporal discrete dynamics of speciation. Complex models can nowadays be studied using the Approximate Bayesian Computation approach which avoids likelihood calculations. The fields progression is hampered by the lack of robust software to estimate the numerous parameters of the speciation process. In this work, we present an R package, pcmabc, publicly available on CRAN, based on Approximate Bayesian Computations, that implements three novel phylogenetic algorithms for trait-dependent speciation modelling. Our phylogenetic comparative methodology takes into account both the simulated traits and phylogeny, attempting to estimate the parameters of the processes generating the phenotype and the trait. The user is not restricted to a predefined set of models and can specify a variety of evolutionary and branching models. We illustrate the software with a simulation-reestimation study focused around the branching Ornstein-Uhlenbeck process, where the branching rate depends non-linearly on the value of the driving Ornstein-Uhlenbeck process. Included in this work is a tutorial on how to use the software.
ISSN:1899-2358
2082-7865
DOI:10.5506/APhysPolBSupp.12.25