Ricci curvature bounded below and uniform rectifiability
We prove that Ahlfors-regular RCD spaces are uniformly rectifiable and satisfy the Bilateral Weak Geometric Lemma with Euclidean tangents–a quantitative flatness condition. The same is shown for Ahlfors regular boundaries of non-collapsed RCD spaces. As an application we deduce a type of quantitativ...
Gespeichert in:
Veröffentlicht in: | Annales Fennici Mathematici 2024-12, Vol.49 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that Ahlfors-regular RCD spaces are uniformly rectifiable and satisfy the Bilateral Weak Geometric Lemma with Euclidean tangents–a quantitative flatness condition. The same is shown for Ahlfors regular boundaries of non-collapsed RCD spaces. As an application we deduce a type of quantitative differentiation for Lipschitz functions on these spaces. |
---|---|
ISSN: | 2737-0690 2737-114X |
DOI: | 10.54330/afm.153338 |