Exceptional set estimates for radial projections in R^n

  We prove two conjectures in this paper. The first conjecture is by Lund, Pham and Thu: Given a Borel set \(A\subset \mathbb{R}^n\) such that \(\dim A\in (k,k+1]\) for some \(k\in\{1,\dots,n-1\}\). For \(0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Fennici Mathematici 2024-11, Vol.49 (2)
Hauptverfasser: Bright, Paige, Gan, Shengwen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:  We prove two conjectures in this paper. The first conjecture is by Lund, Pham and Thu: Given a Borel set \(A\subset \mathbb{R}^n\) such that \(\dim A\in (k,k+1]\) for some \(k\in\{1,\dots,n-1\}\). For \(0
ISSN:2737-0690
2737-114X
DOI:10.54330/afm.152156