The weak lower density condition and uniform rectifiability

  We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(01+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Fennici Mathematici 2022-01, Vol.47 (2), p.791-819
Hauptverfasser: Azzam, Jonas, Hyde, Matthew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 819
container_issue 2
container_start_page 791
container_title Annales Fennici Mathematici
container_volume 47
creator Azzam, Jonas
Hyde, Matthew
description   We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(01+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the classical result that for a metric space \(X\) of finite \(s\)-dimensional Hausdorff measure, the upper \(s\)-dimensional densities are at most 1 \(\mathbf{H}^s\)-almost everywhere.  
doi_str_mv 10.54330/afm.119478
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_54330_afm_119478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_54330_afm_119478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2ad8e998e7a5198dca8dddcfd23b2ae75c7a3951afac4530e04177d930dd07dc3</originalsourceid><addsrcrecordid>eNotz0FLAzEQBeAgCpbak38gd9k6SXadBE9S1AoFLxW8LbOZBIPbXUlWSv-9xfb03uHx4BPiVsGyqY2Be4q7pVKuRnshZhoNVkrVn5fnDg8OrsWilNRBA6it1TgTj9uvIPeBvmU_7kOWHIaSpoP048BpSuMgaWD5O6Q45p3MwU8pJupSfxzdiKtIfQmLc87Fx8vzdrWuNu-vb6unTeU1wlRpYhucswGpUc6yJ8vMPrI2naaAjUcyrlEUydeNgQC1QmRngBmQvZmLu9Ovz2MpOcT2J6cd5UOroP2nt0d6e6KbP4D-TX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The weak lower density condition and uniform rectifiability</title><source>Alma/SFX Local Collection</source><creator>Azzam, Jonas ; Hyde, Matthew</creator><creatorcontrib>Azzam, Jonas ; Hyde, Matthew</creatorcontrib><description>  We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(0&lt;t&lt;r\) satisfying \(\mathbf{H}^{d}_{\infty}(E\cap B(y,t))&lt;(2t)^{d}-\epsilon(2r)^d\) is a Carleson set for every \(\epsilon&gt;0\). To prove this, we generalize a result of Schul by proving, if \(X\) is a \(C\)-doubling metric space, \(\epsilon,\rho\in (0,1)\), \(A&gt;1\), and \(X_n\) is a sequence of maximal \(2^{-n}\)-separated sets in \(X\), and \(\mathbf{B}=\{B(x,2^{-n})\colon x\in X_{n},n\in \mathbb{N}\}\), then   \(\sum \left\{r_{B}^s\colon B\in \mathbf{B}, \frac{\mathbf{H}^s_{\rho r_{B}}(X\cap AB)}{(2r_{AB})^s}&gt;1+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the classical result that for a metric space \(X\) of finite \(s\)-dimensional Hausdorff measure, the upper \(s\)-dimensional densities are at most 1 \(\mathbf{H}^s\)-almost everywhere.  </description><identifier>ISSN: 2737-0690</identifier><identifier>EISSN: 2737-114X</identifier><identifier>DOI: 10.54330/afm.119478</identifier><language>eng</language><ispartof>Annales Fennici Mathematici, 2022-01, Vol.47 (2), p.791-819</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-2ad8e998e7a5198dca8dddcfd23b2ae75c7a3951afac4530e04177d930dd07dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Azzam, Jonas</creatorcontrib><creatorcontrib>Hyde, Matthew</creatorcontrib><title>The weak lower density condition and uniform rectifiability</title><title>Annales Fennici Mathematici</title><description>  We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(0&lt;t&lt;r\) satisfying \(\mathbf{H}^{d}_{\infty}(E\cap B(y,t))&lt;(2t)^{d}-\epsilon(2r)^d\) is a Carleson set for every \(\epsilon&gt;0\). To prove this, we generalize a result of Schul by proving, if \(X\) is a \(C\)-doubling metric space, \(\epsilon,\rho\in (0,1)\), \(A&gt;1\), and \(X_n\) is a sequence of maximal \(2^{-n}\)-separated sets in \(X\), and \(\mathbf{B}=\{B(x,2^{-n})\colon x\in X_{n},n\in \mathbb{N}\}\), then   \(\sum \left\{r_{B}^s\colon B\in \mathbf{B}, \frac{\mathbf{H}^s_{\rho r_{B}}(X\cap AB)}{(2r_{AB})^s}&gt;1+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the classical result that for a metric space \(X\) of finite \(s\)-dimensional Hausdorff measure, the upper \(s\)-dimensional densities are at most 1 \(\mathbf{H}^s\)-almost everywhere.  </description><issn>2737-0690</issn><issn>2737-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotz0FLAzEQBeAgCpbak38gd9k6SXadBE9S1AoFLxW8LbOZBIPbXUlWSv-9xfb03uHx4BPiVsGyqY2Be4q7pVKuRnshZhoNVkrVn5fnDg8OrsWilNRBA6it1TgTj9uvIPeBvmU_7kOWHIaSpoP048BpSuMgaWD5O6Q45p3MwU8pJupSfxzdiKtIfQmLc87Fx8vzdrWuNu-vb6unTeU1wlRpYhucswGpUc6yJ8vMPrI2naaAjUcyrlEUydeNgQC1QmRngBmQvZmLu9Ovz2MpOcT2J6cd5UOroP2nt0d6e6KbP4D-TX8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Azzam, Jonas</creator><creator>Hyde, Matthew</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>The weak lower density condition and uniform rectifiability</title><author>Azzam, Jonas ; Hyde, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2ad8e998e7a5198dca8dddcfd23b2ae75c7a3951afac4530e04177d930dd07dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzam, Jonas</creatorcontrib><creatorcontrib>Hyde, Matthew</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Fennici Mathematici</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzam, Jonas</au><au>Hyde, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The weak lower density condition and uniform rectifiability</atitle><jtitle>Annales Fennici Mathematici</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>47</volume><issue>2</issue><spage>791</spage><epage>819</epage><pages>791-819</pages><issn>2737-0690</issn><eissn>2737-114X</eissn><abstract>  We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(0&lt;t&lt;r\) satisfying \(\mathbf{H}^{d}_{\infty}(E\cap B(y,t))&lt;(2t)^{d}-\epsilon(2r)^d\) is a Carleson set for every \(\epsilon&gt;0\). To prove this, we generalize a result of Schul by proving, if \(X\) is a \(C\)-doubling metric space, \(\epsilon,\rho\in (0,1)\), \(A&gt;1\), and \(X_n\) is a sequence of maximal \(2^{-n}\)-separated sets in \(X\), and \(\mathbf{B}=\{B(x,2^{-n})\colon x\in X_{n},n\in \mathbb{N}\}\), then   \(\sum \left\{r_{B}^s\colon B\in \mathbf{B}, \frac{\mathbf{H}^s_{\rho r_{B}}(X\cap AB)}{(2r_{AB})^s}&gt;1+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the classical result that for a metric space \(X\) of finite \(s\)-dimensional Hausdorff measure, the upper \(s\)-dimensional densities are at most 1 \(\mathbf{H}^s\)-almost everywhere.  </abstract><doi>10.54330/afm.119478</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2737-0690
ispartof Annales Fennici Mathematici, 2022-01, Vol.47 (2), p.791-819
issn 2737-0690
2737-114X
language eng
recordid cdi_crossref_primary_10_54330_afm_119478
source Alma/SFX Local Collection
title The weak lower density condition and uniform rectifiability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20weak%20lower%20density%20condition%20and%20uniform%20rectifiability&rft.jtitle=Annales%20Fennici%20Mathematici&rft.au=Azzam,%20Jonas&rft.date=2022-01-01&rft.volume=47&rft.issue=2&rft.spage=791&rft.epage=819&rft.pages=791-819&rft.issn=2737-0690&rft.eissn=2737-114X&rft_id=info:doi/10.54330/afm.119478&rft_dat=%3Ccrossref%3E10_54330_afm_119478%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true