The weak lower density condition and uniform rectifiability
We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(01+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the cl...
Gespeichert in:
Veröffentlicht in: | Annales Fennici Mathematici 2022-01, Vol.47 (2), p.791-819 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: |
We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(01+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\).
This is a quantitative version of the classical result that for a metric space \(X\) of finite \(s\)-dimensional Hausdorff measure, the upper \(s\)-dimensional densities are at most 1 \(\mathbf{H}^s\)-almost everywhere.
|
---|---|
ISSN: | 2737-0690 2737-114X |
DOI: | 10.54330/afm.119478 |