The weak lower density condition and uniform rectifiability

  We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(01+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Fennici Mathematici 2022-01, Vol.47 (2), p.791-819
Hauptverfasser: Azzam, Jonas, Hyde, Matthew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:  We show that an Ahlfors \(d\)-regular set \(E\) in \(\mathbb{R}^{n}\) is uniformly rectifiable if the set of pairs \((x,r)\in E\times (0,\infty)\) for which there exists \(y \in B(x,r)\) and \(01+\epsilon\right\} \le_{C,A,\epsilon,\rho,s} \mathbf{H}^s(X)\). This is a quantitative version of the classical result that for a metric space \(X\) of finite \(s\)-dimensional Hausdorff measure, the upper \(s\)-dimensional densities are at most 1 \(\mathbf{H}^s\)-almost everywhere.  
ISSN:2737-0690
2737-114X
DOI:10.54330/afm.119478