Existence and multiplicity of normalized solutions for a class of fractional Schrödinger–Poisson equations

  We consider the fractional Schrödinger-Poisson equation \(\begin{cases}(-\Delta)^su-\lambda u+\phi u=|u|^{p-2}u,& x\in\mathbb{R}^3,\\ (-\Delta)^t\phi=u^2,& x\in\mathbb{R}^3,\end{cases}\) where \(s,t\in(0,1)\) satisfies \(2s+2t>3\), \(p\in(\frac{4s+6}{3},2^*_s)\) and \(\lambda\in\mathbb{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Fennici Mathematici 2022-05, Vol.47 (2), p.777-790
Hauptverfasser: Yang, Zhipeng, Zhao, Fukun, Zhao, Shunneng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:  We consider the fractional Schrödinger-Poisson equation \(\begin{cases}(-\Delta)^su-\lambda u+\phi u=|u|^{p-2}u,& x\in\mathbb{R}^3,\\ (-\Delta)^t\phi=u^2,& x\in\mathbb{R}^3,\end{cases}\) where \(s,t\in(0,1)\) satisfies \(2s+2t>3\), \(p\in(\frac{4s+6}{3},2^*_s)\) and \(\lambda\in\mathbb{R}\) is an undetermined parameter. We deal with the case where the associated functional is not bounded below on the \(L^2\)-unit sphere and show the existence of infinitely many solutions \((u,\lambda)\) with \(u\) having prescribed \(L^2\)-norm.
ISSN:2737-0690
2737-114X
DOI:10.54330/afm.119450