Existence and multiplicity of normalized solutions for a class of fractional Schrödinger–Poisson equations
We consider the fractional Schrödinger-Poisson equation \(\begin{cases}(-\Delta)^su-\lambda u+\phi u=|u|^{p-2}u,& x\in\mathbb{R}^3,\\ (-\Delta)^t\phi=u^2,& x\in\mathbb{R}^3,\end{cases}\) where \(s,t\in(0,1)\) satisfies \(2s+2t>3\), \(p\in(\frac{4s+6}{3},2^*_s)\) and \(\lambda\in\mathbb{...
Gespeichert in:
Veröffentlicht in: | Annales Fennici Mathematici 2022-05, Vol.47 (2), p.777-790 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: |
We consider the fractional Schrödinger-Poisson equation
\(\begin{cases}(-\Delta)^su-\lambda u+\phi u=|u|^{p-2}u,& x\in\mathbb{R}^3,\\ (-\Delta)^t\phi=u^2,& x\in\mathbb{R}^3,\end{cases}\)
where \(s,t\in(0,1)\) satisfies \(2s+2t>3\), \(p\in(\frac{4s+6}{3},2^*_s)\) and \(\lambda\in\mathbb{R}\) is an undetermined parameter. We deal with the case where the associated functional is not bounded below on the \(L^2\)-unit sphere and show the existence of infinitely many solutions \((u,\lambda)\) with \(u\) having prescribed \(L^2\)-norm. |
---|---|
ISSN: | 2737-0690 2737-114X |
DOI: | 10.54330/afm.119450 |