Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators

Let E be a reflexive real Banach space with uniformly Gâteaux differentiable norm and F, K : E→E be Lipschitz accretive maps with D(K)=R(F)=E. Suppose that the Hammerstein equation u+KFu=0 has a solution. An explicit iteration method is shown to converge strongly to a solution of the equation. No in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN applied mathematics 2012-12, Vol.2012 (2012), p.1-15
Hauptverfasser: Djitte, N., Sene, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let E be a reflexive real Banach space with uniformly Gâteaux differentiable norm and F, K : E→E be Lipschitz accretive maps with D(K)=R(F)=E. Suppose that the Hammerstein equation u+KFu=0 has a solution. An explicit iteration method is shown to converge strongly to a solution of the equation. No invertibility assumption is imposed on K and the operator F is not restricted to be angle-bounded. Our theorems are significant improvements on important recent results (e.g., (Chiume and Djitte, 2012)).
ISSN:2090-5564
2090-5572
2090-5572
DOI:10.5402/2012/963802