Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators
Let E be a reflexive real Banach space with uniformly Gâteaux differentiable norm and F, K : E→E be Lipschitz accretive maps with D(K)=R(F)=E. Suppose that the Hammerstein equation u+KFu=0 has a solution. An explicit iteration method is shown to converge strongly to a solution of the equation. No in...
Gespeichert in:
Veröffentlicht in: | ISRN applied mathematics 2012-12, Vol.2012 (2012), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let E be a reflexive real Banach space with uniformly Gâteaux differentiable norm and F, K : E→E be Lipschitz accretive maps with D(K)=R(F)=E. Suppose that the Hammerstein equation u+KFu=0 has a solution. An explicit iteration method is shown to converge strongly to a solution of the equation. No invertibility assumption is imposed on K and the operator F is not restricted to be angle-bounded. Our theorems are significant improvements on important recent results (e.g., (Chiume and Djitte, 2012)). |
---|---|
ISSN: | 2090-5564 2090-5572 2090-5572 |
DOI: | 10.5402/2012/963802 |