Dynamics of Single-City Influenza with Seasonal Forcing : From Regularity to Chaos

Seasonal and epidemic influenza continue to cause concern, reinforced by connections between human and avian influenza, and H1N1 swine influenza. Models summarize ideas about disease mechanisms, help understand contributions of different processes, and explore interventions. A compartment model of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN Biomathematics 2012-02, Vol.2012 (2012), p.1-23
Hauptverfasser: Thornley, John H. M., France, James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seasonal and epidemic influenza continue to cause concern, reinforced by connections between human and avian influenza, and H1N1 swine influenza. Models summarize ideas about disease mechanisms, help understand contributions of different processes, and explore interventions. A compartment model of single-city influenza is developed. It is mechanism-based on lower-level studies, rather than focussing on predictions. It is deterministic, without non-disease-status stratification. Categories represented are susceptible, infected, sick, hospitalized, asymptomatic, dead from flu, recovered, and one in which recovered individuals lose immunity. Most categories are represented with sequential pools with first-order kinetics, giving gamma-function progressions with realistic dynamics. A virus compartment allows representation of environmental effects on virus lifetime, thence affecting reproductive ratio. The model's behaviour is explored. It is validated without significant tuning against data on a school outbreak. Seasonal forcing causes a variety of regular and chaotic behaviours, some being typical of seasonal and epidemic flu. It is suggested that models use sequential stages for appropriate disease categories because this is biologically realistic, and authentic dynamics is required if predictions are to be credible. Seasonality is important indicating that control measures might usefully take account of expected weather.
ISSN:2090-7699
2090-7702
2090-7702
DOI:10.5402/2012/471653