ESTIMAÇÃO DA ALTURA DE PLANTIOS FLORESTAIS DE EUCALIPTO POR REGRESSÃO E REDES NEURAIS ARTIFICIAIS

A modelagem estatística na predição de alturas de árvores em florestas plantadas é uma forma de reduzir o tempo e custo do levantamento de dados do inventário florestal. Nesse sentido, o presente o presente estudo teve como objetivo estimar a altura de árvores de Eucalyptus grandis W. Hill através d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofix Scientific Journal 2019-12, Vol.5 (1), p.141
Hauptverfasser: Teixeira Martins, Matheus, Paes Marangon, Gabriel, Arnoni Costa, Emanuel, Denardin da Silveira, Bruna, Cubas, Rafael, Pierre Cavalli, Jean
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A modelagem estatística na predição de alturas de árvores em florestas plantadas é uma forma de reduzir o tempo e custo do levantamento de dados do inventário florestal. Nesse sentido, o presente o presente estudo teve como objetivo estimar a altura de árvores de Eucalyptus grandis W. Hill através de modelos de regressão (MR) e redes neurais artificiais (RNA). Para isso, foram utilizados 713 pares de dados de altura e diâmetro de árvores individuais medidas no inventário florestal, sendo que 70% dos dados foram utilizados para o ajuste dos modelos de regressão e treino das RNA e 30% utilizados para validação das técnicas. Foram ajustados cinco modelos hipsométricos tradicionais, cinco modelos em função da variável dap e da variável idade na forma aritmética, quadrática, logarítmica, inversa e raiz quadrada, totalizando vinte e cinco novos modelos e, por fim, foram treinadas cinco redes neurais do tipo Multilayer Perceptron. As técnicas foram avaliadas estatisticamente através da correlação (rYY), raiz quadrada do quadrado médio do erro (RQME) e análise gráfica de resíduos. Tanto no treino como na validação as RNA obtiveram melhores resultados estatísticos, na validação a melhor RNA obteve rYY de 0,941 e RQME de 1,238 m. O modelo de regressão de relação h/d obteve rYY de 0,928 e RQME de 1,373 m. O modelo de regressão com inserção da variável idade apresentou rYY de 0,936 e RQME de 1,289 m. Ambas as técnicas poderiam ser utilizadas para estimar a altura das árvores de E. grandis, porém as RNA são mais acuradas.
ISSN:2525-9725
2525-9725
DOI:10.5380/biofix.v5i1.68839