Uso de técnicas de aprendizado de máquina para predição do tempo de graduação dos discentes de Engenharia da Computação na região Sudeste do Brasil
O Exame Nacional de Desempenho de Estudantes (ENADE) foi criado para avaliar o rendimento dos estudantes nos cursos das instituições superiores. Através do desempenho dos estudantes estima a qualidade dos cursos. O abandono ou atraso do curso acarreta uma ruim gestão universitária, já que o orçament...
Gespeichert in:
Veröffentlicht in: | Revista Brasileira de Computação Aplicada. 2024-05, Vol.16 (1), p.26-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | O Exame Nacional de Desempenho de Estudantes (ENADE) foi criado para avaliar o rendimento dos estudantes nos cursos das instituições superiores. Através do desempenho dos estudantes estima a qualidade dos cursos. O abandono ou atraso do curso acarreta uma ruim gestão universitária, já que o orçamento que as graduações recebem tem como fator o número de alunos formandos. Analisar dados do ENADE pode gerar insights sobre o tempo que os discentes permanecem na graduação. Como os dados do ENADE contém um número elevado de informações realizar análises visualmente é algo inviável. Para contornar essa situação, técnicas de aprendizado de máquina podem ser utilizadas com intuito de automatizar essa tarefa e apresentar os resultados. Nesse contexto, o objetivo deste trabalho é determinar, através da base do ENADE 2019, o tempo de permanência dos estudantes na graduação, tendo em vista os cursos de Engenharia da Computação na região Sudeste do Brasil. A metodologia envole o pré-processamento, a seleção de características, balanceamento dos dados, abordagem de seleção de parâmetros Grid-Search, validação cruzada e classificação. Os resultados mostram que o Random Forest teve bom desempenho nos experimentos realizados e que a aplicação do SMOTE para balanceamento dos dados se faz necessária. |
---|---|
ISSN: | 2176-6649 2176-6649 |
DOI: | 10.5335/rbca.v16i1.14456 |