Previsão de inflação com o uso de Inteligência Artificial
A inflação é um aumento generalizados dos preços em uma economia. Pequenas taxas de inflação são naturais; entretanto, a incerteza causada pela volatilidade da inflação dificulta o delineamento de políticas monetárias. No Brasil, adota-se o IPCA como meta de inflação; entretanto, o uso de núcleos de...
Gespeichert in:
Veröffentlicht in: | Revista Brasileira de Computação Aplicada. 2021-05, Vol.13 (2), p.96-104 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A inflação é um aumento generalizados dos preços em uma economia. Pequenas taxas de inflação são naturais; entretanto, a incerteza causada pela volatilidade da inflação dificulta o delineamento de políticas monetárias. No Brasil, adota-se o IPCA como meta de inflação; entretanto, o uso de núcleos de inflação como meta possibilitaria o delineamento de políticas monetárias menos rígidas e menos suscetíveis à choques externos. Neste trabalho, propõe-se a construção de núcleos de inflação baseados em wavelets, uma vez que em contextos inflacionários apresentam melhor desempenho na análise da tendência quando comparados com núcleos de inflação usuais. Para a previsão, adotam-se técnicas de inteligência artificial, como as redes neurais. O uso de redes neurais possibilita lidar com problemas altamente complexos, os quais nem sempre podem ser descritos por modelos analíticos. Delimitam-se as estimativas prováveis das previsões futuras através de intervalos de confiança. Dentre as principais conclusões do trabalho, salienta-se que os núcleos de inflação baseados em wavelets possuem menores intervalos de confiança, além de apresentarem menores erros na construção da rede neural. Verifica-se, ainda, que as previsões geradas pelos núcleos de inflação são suavizações da inflação, permitindo identificar a tendência da inflação para um horizonte de até doze meses. |
---|---|
ISSN: | 2176-6649 2176-6649 |
DOI: | 10.5335/rbca.v13i2.12584 |