Existence of solutions for a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions

In this work we will study the eigenvalues for a fourth order elliptic equation with $p(x)$-growth conditions $\Delta^2_{p(x)} u=\lambda |u|^{p(x)-2} u$, under Neumann boundary conditions, where $p(x)$ is a continuous function defined on the bounded domain with $p(x)>1$. Through the Ljusternik-Sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2016-01, Vol.34 (1), p.253-272
Hauptverfasser: Ben Haddouch, Khalil, El Allali, Zakaria, Tsouli, Najib, El Habib, Siham, Kissi, Fouad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we will study the eigenvalues for a fourth order elliptic equation with $p(x)$-growth conditions $\Delta^2_{p(x)} u=\lambda |u|^{p(x)-2} u$, under Neumann boundary conditions, where $p(x)$ is a continuous function defined on the bounded domain with $p(x)>1$. Through the Ljusternik-Schnireleman theory on $C^1$-manifold, we prove the existence of infinitely many eigenvalue sequences and $\sup \Lambda =+\infty$, where $\Lambda$ is the set of all eigenvalues.
ISSN:0037-8712
2175-1188
DOI:10.5269/bspm.v34i1.25626