Existence of solutions for a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions
In this work we will study the eigenvalues for a fourth order elliptic equation with $p(x)$-growth conditions $\Delta^2_{p(x)} u=\lambda |u|^{p(x)-2} u$, under Neumann boundary conditions, where $p(x)$ is a continuous function defined on the bounded domain with $p(x)>1$. Through the Ljusternik-Sc...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2016-01, Vol.34 (1), p.253-272 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we will study the eigenvalues for a fourth order elliptic equation with $p(x)$-growth conditions $\Delta^2_{p(x)} u=\lambda |u|^{p(x)-2} u$, under Neumann boundary conditions, where $p(x)$ is a continuous function defined on the bounded domain with $p(x)>1$. Through the Ljusternik-Schnireleman theory on $C^1$-manifold, we prove the existence of infinitely many eigenvalue sequences and $\sup \Lambda =+\infty$, where $\Lambda$ is the set of all eigenvalues. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v34i1.25626 |