(Jordan) derivation on amalgamated duplication of a ring along an ideal

Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2022-01, Vol.40, p.1-11
Hauptverfasser: Louartiti, Khalid, Mamouni, Abdellah, Tamekkante, Mohammed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Boletim da Sociedade Paranaense de Matemática
container_volume 40
creator Louartiti, Khalid
Mamouni, Abdellah
Tamekkante, Mohammed
description Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided  that  A  is semiprime.  When A is noncommutative prime, then $A\bowtie I$  is noncommutative semiprime (but not prime except if I = (0)).  In this case, we prove that any map of $A\bowtie I$   which is both Jordan and Jordan triple derivation is a derivation.
doi_str_mv 10.5269/bspm.42803
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_5269_bspm_42803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5269_bspm_42803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-3921e9b644db21b9db880d9a54b26e70064dd619807a0550f1d09770e26ebfdb3</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoOIyz8RdkqULH99K0SZYy6KgMuNF1SfrSIdAvkir4722dgcu9iwN3cRi7RdgWojSPLo3dVgoN-QVbCVRFhqj1JVsB5CrTCsU126QUHIABqdGIFdvfvQ-RbH_PycfwY6cw9HyO7Wx7nGvyxOl7bEN9Rg23PIb-yG07LN3zQN62N-yqsW3ym_Ou2dfL8-fuNTt87N92T4esRgFTlhuB3rhSSnICnSGnNZCxhXSi9AqglEQlGg3KQlFAgwRGKfAzdQ25fM0eTr91HFKKvqnGGDobfyuEarFQLRaqfwv5HyRAT2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>(Jordan) derivation on amalgamated duplication of a ring along an ideal</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Louartiti, Khalid ; Mamouni, Abdellah ; Tamekkante, Mohammed</creator><creatorcontrib>Louartiti, Khalid ; Mamouni, Abdellah ; Tamekkante, Mohammed</creatorcontrib><description>Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided  that  A  is semiprime.  When A is noncommutative prime, then $A\bowtie I$  is noncommutative semiprime (but not prime except if I = (0)).  In this case, we prove that any map of $A\bowtie I$   which is both Jordan and Jordan triple derivation is a derivation.</description><identifier>ISSN: 0037-8712</identifier><identifier>EISSN: 2175-1188</identifier><identifier>DOI: 10.5269/bspm.42803</identifier><language>eng</language><ispartof>Boletim da Sociedade Paranaense de Matemática, 2022-01, Vol.40, p.1-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-3921e9b644db21b9db880d9a54b26e70064dd619807a0550f1d09770e26ebfdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Louartiti, Khalid</creatorcontrib><creatorcontrib>Mamouni, Abdellah</creatorcontrib><creatorcontrib>Tamekkante, Mohammed</creatorcontrib><title>(Jordan) derivation on amalgamated duplication of a ring along an ideal</title><title>Boletim da Sociedade Paranaense de Matemática</title><description>Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided  that  A  is semiprime.  When A is noncommutative prime, then $A\bowtie I$  is noncommutative semiprime (but not prime except if I = (0)).  In this case, we prove that any map of $A\bowtie I$   which is both Jordan and Jordan triple derivation is a derivation.</description><issn>0037-8712</issn><issn>2175-1188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoOIyz8RdkqULH99K0SZYy6KgMuNF1SfrSIdAvkir4722dgcu9iwN3cRi7RdgWojSPLo3dVgoN-QVbCVRFhqj1JVsB5CrTCsU126QUHIABqdGIFdvfvQ-RbH_PycfwY6cw9HyO7Wx7nGvyxOl7bEN9Rg23PIb-yG07LN3zQN62N-yqsW3ym_Ou2dfL8-fuNTt87N92T4esRgFTlhuB3rhSSnICnSGnNZCxhXSi9AqglEQlGg3KQlFAgwRGKfAzdQ25fM0eTr91HFKKvqnGGDobfyuEarFQLRaqfwv5HyRAT2E</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Louartiti, Khalid</creator><creator>Mamouni, Abdellah</creator><creator>Tamekkante, Mohammed</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>(Jordan) derivation on amalgamated duplication of a ring along an ideal</title><author>Louartiti, Khalid ; Mamouni, Abdellah ; Tamekkante, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-3921e9b644db21b9db880d9a54b26e70064dd619807a0550f1d09770e26ebfdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louartiti, Khalid</creatorcontrib><creatorcontrib>Mamouni, Abdellah</creatorcontrib><creatorcontrib>Tamekkante, Mohammed</creatorcontrib><collection>CrossRef</collection><jtitle>Boletim da Sociedade Paranaense de Matemática</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louartiti, Khalid</au><au>Mamouni, Abdellah</au><au>Tamekkante, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(Jordan) derivation on amalgamated duplication of a ring along an ideal</atitle><jtitle>Boletim da Sociedade Paranaense de Matemática</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>40</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0037-8712</issn><eissn>2175-1188</eissn><abstract>Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided  that  A  is semiprime.  When A is noncommutative prime, then $A\bowtie I$  is noncommutative semiprime (but not prime except if I = (0)).  In this case, we prove that any map of $A\bowtie I$   which is both Jordan and Jordan triple derivation is a derivation.</abstract><doi>10.5269/bspm.42803</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-8712
ispartof Boletim da Sociedade Paranaense de Matemática, 2022-01, Vol.40, p.1-11
issn 0037-8712
2175-1188
language eng
recordid cdi_crossref_primary_10_5269_bspm_42803
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title (Jordan) derivation on amalgamated duplication of a ring along an ideal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(Jordan)%20derivation%20on%20amalgamated%20duplication%20of%20a%20ring%20along%20an%20ideal&rft.jtitle=Boletim%20da%20Sociedade%20Paranaense%20de%20Matem%C3%A1tica&rft.au=Louartiti,%20Khalid&rft.date=2022-01-01&rft.volume=40&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0037-8712&rft.eissn=2175-1188&rft_id=info:doi/10.5269/bspm.42803&rft_dat=%3Ccrossref%3E10_5269_bspm_42803%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true