(Jordan) derivation on amalgamated duplication of a ring along an ideal
Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$. In this paper, we characterize $A\bowtie I$ over which any (resp. minimal) prime ideal is invariant under any derivation provided ...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2022-01, Vol.40, p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$. In this paper, we characterize $A\bowtie I$ over which any (resp. minimal) prime ideal is invariant under any derivation provided that A is semiprime. When A is noncommutative prime, then $A\bowtie I$ is noncommutative semiprime (but not prime except if I = (0)). In this case, we prove that any map of $A\bowtie I$ which is both Jordan and Jordan triple derivation is a derivation. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.42803 |