(Jordan) derivation on amalgamated duplication of a ring along an ideal

Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2022-01, Vol.40, p.1-11
Hauptverfasser: Louartiti, Khalid, Mamouni, Abdellah, Tamekkante, Mohammed
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a ring and I be an ideal of A. The amalgamated duplication of A along I is the subring of A × A defined by $A\bowtie I := {(a, a + i) |a ∈ A, i ∈ I}$.  In this paper, we characterize $A\bowtie I$  over which any (resp. minimal)  prime  ideal  is  invariant  under  any  derivation  provided  that  A  is semiprime.  When A is noncommutative prime, then $A\bowtie I$  is noncommutative semiprime (but not prime except if I = (0)).  In this case, we prove that any map of $A\bowtie I$   which is both Jordan and Jordan triple derivation is a derivation.
ISSN:0037-8712
2175-1188
DOI:10.5269/bspm.42803