The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO 2 from nadir-viewing satellites by weighted convolution
The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the...
Gespeichert in:
Veröffentlicht in: | Atmospheric measurement techniques 2016-07, Vol.9 (7), p.2753-2779 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the tropospheric column is effectively shielded. The contribution of individual satellite measurements to the stratospheric estimate is controlled by various weighting factors. STREAM is a flexible and robust algorithm and does not require input from chemical transport models. It was developed as a verification algorithm for the upcoming satellite instrument TROPOMI, as a complement to the operational stratospheric correction based on data assimilation. STREAM was successfully applied to the UV/vis satellite instruments GOME 1/2, SCIAMACHY, and OMI. It overcomes some of the artifacts of previous algorithms, as it is capable of reproducing gradients of stratospheric NO2, e.g., related to the polar vortex, and reduces interpolation errors over continents. Based on synthetic input data, the uncertainty of STREAM was quantified as about 0.1–0.2 × 1015 molecules cm−2, in accordance with the typical deviations between stratospheric estimates from different algorithms compared in this study. |
---|---|
ISSN: | 1867-8548 1867-8548 |
DOI: | 10.5194/amt-9-2753-2016 |