Intercomparison of arctic XH 2 O observations from three ground-based Fourier transform infrared networks and application for satellite validation
In this paper, we compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COCCON) with retrievals from two co-located high-resolution Fourier transform infrared (FTIR) spectrometers as references at two boreal sites, Kir...
Gespeichert in:
Veröffentlicht in: | Atmospheric measurement techniques 2021-03, Vol.14 (3), p.1993-2011 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we compare column-averaged dry-air mole fractions of water
vapor (XH2O) retrievals from the COllaborative Carbon Column
Observing Network (COCCON) with retrievals from two co-located high-resolution
Fourier transform infrared (FTIR) spectrometers as references at two boreal
sites, Kiruna, Sweden, and Sodankylä, Finland, from 6 March 2017 to
20 September 2019. In the framework of the Network for the Detection
of Atmospheric Composition Change (NDACC), an FTIR spectrometer is operated at
Kiruna. The H2O product derived from these observations has been
generated with the MUlti-platform remote Sensing of Isotopologues
for investigating the Cycle of Atmospheric water (MUSICA) processor. In
Sodankylä, a Total Carbon Column Observing Network (TCCON) spectrometer
is operated, and the official XH2O data as provided by TCCON are used
for this study. The datasets are in good overall agreement, with COCCON data
showing a wet bias of (49.20±58.61) ppm ((3.33±3.37) %,
R2=0.9992) compared with MUSICA NDACC and (56.32±45.63) ppm
((3.44±1.77) %, R2=0.9997) compared with TCCON. Furthermore, the a priori H2O volume mixing ratio (VMR) profiles (MAP) used as a priori information in the TCCON retrievals (also adopted for COCCON
retrievals) are evaluated with respect to radiosonde (Vaisala RS41) profiles
at Sodankylä. The MAP and radiosonde profiles show similar shapes and a
good linear correlation of integrated XH2O, indicating that MAP is a
reasonable approximation of the true atmospheric state and an appropriate
choice for the scaling retrieval methods as applied by COCCON and TCCON.
COCCON shows a reduced dry bias (−14.96 %) in comparison with TCCON (−19.08 %) with respect to radiosonde XH2O. Finally, we investigate the quality of satellite data at high latitudes. For
this purpose, the COCCON XH2O is compared with retrievals from the
Infrared Atmospheric Sounding Interferometer (IASI) generated with the
MUSICA processor (MUSICA IASI) and with retrievals from the TROPOspheric
Monitoring Instrument (TROPOMI). Both paired datasets generally show good
agreement and similar correlations at the two sites. COCCON measures 4.64 % less XH2O at Kiruna and 3.36 % less at Sodankylä with respect to MUSICA IASI, whereas COCCON measures 9.71 % more XH2O at Kiruna and 7.75 % more at Sodankylä compared with TROPOMI. Our study supports the assumption that COCCON also delivers a
well-characterized XH2O data product. This emphasizes that this approach might complement the TCCON n |
---|---|
ISSN: | 1867-8548 1867-8548 |
DOI: | 10.5194/amt-14-1993-2021 |