A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM 10 estimation
The use of automated lidar ceilometer (ALC) systems for the aerosol vertically resolved characterization has increased in recent years thanks to their low construction and operation costs and their capability of providing continuous unattended measurements. At the same time there is a need to conver...
Gespeichert in:
Veröffentlicht in: | Atmospheric measurement techniques 2018-11, Vol.11 (11), p.6013-6042 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of automated lidar ceilometer (ALC) systems for the
aerosol vertically resolved characterization has increased in recent
years thanks to their low construction and operation costs and their
capability of providing continuous unattended measurements. At the same time
there is a need to convert the ALC signals into usable geophysical
quantities. In fact, the quantitative assessment of the aerosol properties
from ALC measurements and the relevant assimilation in meteorological
forecast models is amongst the main objectives of the EU COST Action TOPROF
(“Towards operational ground-based profiling with ALCs, Doppler lidars and
microwave radiometers for improving weather forecasts”). Concurrently, the E-PROFILE program of the European
Meteorological Services Network (EUMETNET) focuses on the harmonization of
ALC measurements and data provision across Europe. Within these frameworks,
we implemented a model-assisted methodology to retrieve key aerosol
properties (extinction coefficient, surface area, and volume) from elastic
lidar and/or ALC measurements. The method is based on results from a large
set of aerosol scattering simulations (Mie theory) performed at UV, visible,
and near-IR wavelengths using a Monte Carlo approach to select the input
aerosol microphysical properties. An average “continental aerosol type”
(i.e., clean to moderately polluted continental aerosol conditions) is
addressed in this study. Based on the simulation results, we derive mean
functional relationships linking the aerosol backscatter coefficients to the
abovementioned variables. Applied in the data inversion of single-wavelength
lidars and/or ALCs, these relationships allow quantitative determination of
the vertically resolved aerosol backscatter, extinction, volume, and surface
area and, in turn, of the extinction-to-backscatter ratios (i.e., the
lidar ratios, LRs) and extinction-to-volume conversion factor
(cv) at 355, 532, and 1064 nm. These variables provide valuable
information for visibility, radiative transfer, and air quality applications.
This study also includes (1) validation of the model simulations with real
measurements and (2) test applications of the proposed model-based ALC
inversion methodology. In particular, our model simulations were compared to
backscatter and extinction coefficients independently retrieved by Raman
lidar systems operating at different continental sites within the European
Aerosol Research Lidar Network (EARLINET). This comparison shows g |
---|---|
ISSN: | 1867-8548 1867-8548 |
DOI: | 10.5194/amt-11-6013-2018 |