CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION
We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion....
Gespeichert in:
Veröffentlicht in: | Journal of the Japanese Society of Computational Statistics 1996, Vol.9(1), pp.53-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Journal of the Japanese Society of Computational Statistics |
container_volume | 9 |
creator | Shin, Jae-Kyoung Tanaka, Yutaka |
description | We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method. |
doi_str_mv | 10.5183/jjscs1988.9.53 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5183_jjscs1988_9_53</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jjscs1988_9_1_9_1_53_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-bab0656b3ed216f678b1146522326f3096cc35bc4819dd9c47b6e392bacb1e903</originalsourceid><addsrcrecordid>eNptUM1LwzAcDaLgnF495x9oTfprsuTY1W4rdM1IO8FTbbJUV-YHzS777_2YDAQPjwfv6_AQuqUkZFTAXd9766kUIpQhgzM0okLQgAJMztGISMqCCBi5RFfe94TEUjA-Qk-pVlUVPCRFfp_USj_idKHyNMMzpXG9yHC5Xk4zjdUMr3RepvkqKXCqlitVZmVd4bz8T8c6m-usqnJVXqOLrt15d_PLY7SeZXW6CAo1z9OkCCxADIFpDeGMG3CbiPKOT4ShNOYsiiDiHRDJrQVmbCyo3GykjSeGO5CRaa2hThIYo_C4a4d37wfXNR_D9rUdDg0lzfc_zemfRjYMvgrTY6H3-_bZneLtsN_anfsTpz9gcDLtSzs07g0-Af1Qabw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shin, Jae-Kyoung ; Tanaka, Yutaka</creator><creatorcontrib>Shin, Jae-Kyoung ; Tanaka, Yutaka</creatorcontrib><description>We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method.</description><identifier>ISSN: 0915-2350</identifier><identifier>EISSN: 1881-1337</identifier><identifier>DOI: 10.5183/jjscs1988.9.53</identifier><language>eng</language><publisher>Japanese Society of Computational Statistics</publisher><subject>cross-validation ; number of principal components ; principal component regression</subject><ispartof>Journal of the Japanese Society of Computational Statistics, 1996, Vol.9(1), pp.53-59</ispartof><rights>The Japanese Society of Computational Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3343-bab0656b3ed216f678b1146522326f3096cc35bc4819dd9c47b6e392bacb1e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4014,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>Shin, Jae-Kyoung</creatorcontrib><creatorcontrib>Tanaka, Yutaka</creatorcontrib><title>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</title><title>Journal of the Japanese Society of Computational Statistics</title><addtitle>JJSCS</addtitle><description>We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method.</description><subject>cross-validation</subject><subject>number of principal components</subject><subject>principal component regression</subject><issn>0915-2350</issn><issn>1881-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptUM1LwzAcDaLgnF495x9oTfprsuTY1W4rdM1IO8FTbbJUV-YHzS777_2YDAQPjwfv6_AQuqUkZFTAXd9766kUIpQhgzM0okLQgAJMztGISMqCCBi5RFfe94TEUjA-Qk-pVlUVPCRFfp_USj_idKHyNMMzpXG9yHC5Xk4zjdUMr3RepvkqKXCqlitVZmVd4bz8T8c6m-usqnJVXqOLrt15d_PLY7SeZXW6CAo1z9OkCCxADIFpDeGMG3CbiPKOT4ShNOYsiiDiHRDJrQVmbCyo3GykjSeGO5CRaa2hThIYo_C4a4d37wfXNR_D9rUdDg0lzfc_zemfRjYMvgrTY6H3-_bZneLtsN_anfsTpz9gcDLtSzs07g0-Af1Qabw</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Shin, Jae-Kyoung</creator><creator>Tanaka, Yutaka</creator><general>Japanese Society of Computational Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1996</creationdate><title>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</title><author>Shin, Jae-Kyoung ; Tanaka, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-bab0656b3ed216f678b1146522326f3096cc35bc4819dd9c47b6e392bacb1e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>cross-validation</topic><topic>number of principal components</topic><topic>principal component regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Jae-Kyoung</creatorcontrib><creatorcontrib>Tanaka, Yutaka</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Japanese Society of Computational Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Jae-Kyoung</au><au>Tanaka, Yutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</atitle><jtitle>Journal of the Japanese Society of Computational Statistics</jtitle><addtitle>JJSCS</addtitle><date>1996</date><risdate>1996</risdate><volume>9</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0915-2350</issn><eissn>1881-1337</eissn><abstract>We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method.</abstract><pub>Japanese Society of Computational Statistics</pub><doi>10.5183/jjscs1988.9.53</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0915-2350 |
ispartof | Journal of the Japanese Society of Computational Statistics, 1996, Vol.9(1), pp.53-59 |
issn | 0915-2350 1881-1337 |
language | eng |
recordid | cdi_crossref_primary_10_5183_jjscs1988_9_53 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | cross-validation number of principal components principal component regression |
title | CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CROSS-VALIDATORY%20CHOICE%20FOR%20THE%20NUMBER%20OF%20PRINCIPAL%20COMPONENTS%20IN%20PRINCIPAL%20COMPONENT%20REGRESSION&rft.jtitle=Journal%20of%20the%20Japanese%20Society%20of%20Computational%20Statistics&rft.au=Shin,%20Jae-Kyoung&rft.date=1996&rft.volume=9&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0915-2350&rft.eissn=1881-1337&rft_id=info:doi/10.5183/jjscs1988.9.53&rft_dat=%3Cjstage_cross%3Earticle_jjscs1988_9_1_9_1_53_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |