CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION

We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Japanese Society of Computational Statistics 1996, Vol.9(1), pp.53-59
Hauptverfasser: Shin, Jae-Kyoung, Tanaka, Yutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 53
container_title Journal of the Japanese Society of Computational Statistics
container_volume 9
creator Shin, Jae-Kyoung
Tanaka, Yutaka
description We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method.
doi_str_mv 10.5183/jjscs1988.9.53
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_5183_jjscs1988_9_53</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jjscs1988_9_1_9_1_53_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-bab0656b3ed216f678b1146522326f3096cc35bc4819dd9c47b6e392bacb1e903</originalsourceid><addsrcrecordid>eNptUM1LwzAcDaLgnF495x9oTfprsuTY1W4rdM1IO8FTbbJUV-YHzS777_2YDAQPjwfv6_AQuqUkZFTAXd9766kUIpQhgzM0okLQgAJMztGISMqCCBi5RFfe94TEUjA-Qk-pVlUVPCRFfp_USj_idKHyNMMzpXG9yHC5Xk4zjdUMr3RepvkqKXCqlitVZmVd4bz8T8c6m-usqnJVXqOLrt15d_PLY7SeZXW6CAo1z9OkCCxADIFpDeGMG3CbiPKOT4ShNOYsiiDiHRDJrQVmbCyo3GykjSeGO5CRaa2hThIYo_C4a4d37wfXNR_D9rUdDg0lzfc_zemfRjYMvgrTY6H3-_bZneLtsN_anfsTpz9gcDLtSzs07g0-Af1Qabw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shin, Jae-Kyoung ; Tanaka, Yutaka</creator><creatorcontrib>Shin, Jae-Kyoung ; Tanaka, Yutaka</creatorcontrib><description>We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method.</description><identifier>ISSN: 0915-2350</identifier><identifier>EISSN: 1881-1337</identifier><identifier>DOI: 10.5183/jjscs1988.9.53</identifier><language>eng</language><publisher>Japanese Society of Computational Statistics</publisher><subject>cross-validation ; number of principal components ; principal component regression</subject><ispartof>Journal of the Japanese Society of Computational Statistics, 1996, Vol.9(1), pp.53-59</ispartof><rights>The Japanese Society of Computational Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3343-bab0656b3ed216f678b1146522326f3096cc35bc4819dd9c47b6e392bacb1e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4014,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>Shin, Jae-Kyoung</creatorcontrib><creatorcontrib>Tanaka, Yutaka</creatorcontrib><title>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</title><title>Journal of the Japanese Society of Computational Statistics</title><addtitle>JJSCS</addtitle><description>We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method.</description><subject>cross-validation</subject><subject>number of principal components</subject><subject>principal component regression</subject><issn>0915-2350</issn><issn>1881-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptUM1LwzAcDaLgnF495x9oTfprsuTY1W4rdM1IO8FTbbJUV-YHzS777_2YDAQPjwfv6_AQuqUkZFTAXd9766kUIpQhgzM0okLQgAJMztGISMqCCBi5RFfe94TEUjA-Qk-pVlUVPCRFfp_USj_idKHyNMMzpXG9yHC5Xk4zjdUMr3RepvkqKXCqlitVZmVd4bz8T8c6m-usqnJVXqOLrt15d_PLY7SeZXW6CAo1z9OkCCxADIFpDeGMG3CbiPKOT4ShNOYsiiDiHRDJrQVmbCyo3GykjSeGO5CRaa2hThIYo_C4a4d37wfXNR_D9rUdDg0lzfc_zemfRjYMvgrTY6H3-_bZneLtsN_anfsTpz9gcDLtSzs07g0-Af1Qabw</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Shin, Jae-Kyoung</creator><creator>Tanaka, Yutaka</creator><general>Japanese Society of Computational Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1996</creationdate><title>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</title><author>Shin, Jae-Kyoung ; Tanaka, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-bab0656b3ed216f678b1146522326f3096cc35bc4819dd9c47b6e392bacb1e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>cross-validation</topic><topic>number of principal components</topic><topic>principal component regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Jae-Kyoung</creatorcontrib><creatorcontrib>Tanaka, Yutaka</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Japanese Society of Computational Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Jae-Kyoung</au><au>Tanaka, Yutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION</atitle><jtitle>Journal of the Japanese Society of Computational Statistics</jtitle><addtitle>JJSCS</addtitle><date>1996</date><risdate>1996</risdate><volume>9</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0915-2350</issn><eissn>1881-1337</eissn><abstract>We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method.</abstract><pub>Japanese Society of Computational Statistics</pub><doi>10.5183/jjscs1988.9.53</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-2350
ispartof Journal of the Japanese Society of Computational Statistics, 1996, Vol.9(1), pp.53-59
issn 0915-2350
1881-1337
language eng
recordid cdi_crossref_primary_10_5183_jjscs1988_9_53
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects cross-validation
number of principal components
principal component regression
title CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CROSS-VALIDATORY%20CHOICE%20FOR%20THE%20NUMBER%20OF%20PRINCIPAL%20COMPONENTS%20IN%20PRINCIPAL%20COMPONENT%20REGRESSION&rft.jtitle=Journal%20of%20the%20Japanese%20Society%20of%20Computational%20Statistics&rft.au=Shin,%20Jae-Kyoung&rft.date=1996&rft.volume=9&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0915-2350&rft.eissn=1881-1337&rft_id=info:doi/10.5183/jjscs1988.9.53&rft_dat=%3Cjstage_cross%3Earticle_jjscs1988_9_1_9_1_53_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true