CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION
We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion....
Gespeichert in:
Veröffentlicht in: | Journal of the Japanese Society of Computational Statistics 1996, Vol.9(1), pp.53-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a cross-validatory method to choose the number of principal components in principal component regression based on the predicted error sum of squares. In the process of computation, we propose to use an approximation formula using a linear approximation based on the perturbation expansion. A numerical example is given to show the validity of the proposed method. |
---|---|
ISSN: | 0915-2350 1881-1337 |
DOI: | 10.5183/jjscs1988.9.53 |