Note on class number parity of an abelian field of prime conductor, III
Let p be a prime number of the form p = 2ℓ+1 with some odd prime number ℓ. For such a prime number p, it is shown that the relative class number hp- of the pth cyclotomic field Q(ζp) is odd when 2 remains prime in Q(ζℓ)+ by Estes [3], Stevenhagen [11] and Metsänkylä [8] using a Bernoulli number asso...
Gespeichert in:
Veröffentlicht in: | Mathematical Journal of Ibaraki University 2019, Vol.51, pp.39-48 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be a prime number of the form p = 2ℓ+1 with some odd prime number ℓ. For such a prime number p, it is shown that the relative class number hp- of the pth cyclotomic field Q(ζp) is odd when 2 remains prime in Q(ζℓ)+ by Estes [3], Stevenhagen [11] and Metsänkylä [8] using a Bernoulli number associated to Q(ζp). In this note, we give an alternative proof of the assertion using a cyclotomic unit of Q(ζp)+. |
---|---|
ISSN: | 1343-3636 1883-4353 |
DOI: | 10.5036/mjiu.51.39 |