Note on class number parity of an abelian field of prime conductor, III

Let p be a prime number of the form p = 2ℓ+1 with some odd prime number ℓ. For such a prime number p, it is shown that the relative class number hp- of the pth cyclotomic field Q(ζp) is odd when 2 remains prime in Q(ζℓ)+ by Estes [3], Stevenhagen [11] and Metsänkylä [8] using a Bernoulli number asso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Journal of Ibaraki University 2019, Vol.51, pp.39-48
1. Verfasser: Ichimura, Humio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be a prime number of the form p = 2ℓ+1 with some odd prime number ℓ. For such a prime number p, it is shown that the relative class number hp- of the pth cyclotomic field Q(ζp) is odd when 2 remains prime in Q(ζℓ)+ by Estes [3], Stevenhagen [11] and Metsänkylä [8] using a Bernoulli number associated to Q(ζp). In this note, we give an alternative proof of the assertion using a cyclotomic unit of Q(ζp)+.
ISSN:1343-3636
1883-4353
DOI:10.5036/mjiu.51.39