A Stochastic Simulator of a Multi-Component Distillation Tower Built as an Excel Macro

Dynamic process simulation is widely used in teaching controller design, as it allows foreseeing the performance of different control configurations and controller tunings. Currently, most college-level controller design exercises that are based on simulation consider deterministic perturbations (i....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2023-04, Vol.13 (2), p.10222-10227
Hauptverfasser: Chew Hernandez, Mario Luis, Viveros Rosas, Leopoldo, Perez Torres, Jose Roberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic process simulation is widely used in teaching controller design, as it allows foreseeing the performance of different control configurations and controller tunings. Currently, most college-level controller design exercises that are based on simulation consider deterministic perturbations (i.e. steps or ramps). In real life however, processes are more likely to face fluctuating, random disturbances, so the use of stochastic simulation in controller tuning exercises would provide students with an experience closer to their future professional practice than that provided by deterministic simulation. However, public institutions attempting to use dynamic, stochastic simulators in teaching, are hindered by the need of buying licenses of simulation packages or specialized programming languages (such as Matlab), as there aren´t any dynamic, stochastic simulators available as downloadable freeware. This paper shows a dynamic, stochastic simulator with a friendly interface of a distillation tower, developed as an Excel macro. This simulator has the advantage that it can be used at no cost to educational institutions since Excel is almost universally known and used by college faculties.
ISSN:2241-4487
1792-8036
DOI:10.48084/etasr.5563