A Deep Learning Technique for Detecting High Impedance Faults in Medium Voltage Distribution Networks
Utility companies always struggle with the High Impedance Fault (HIF) in the electrical distribution systems. In this article, the current signal is seen in situations involving 10,400 different samples, with and without HIF, like linear, non-linear load, and capacitance switching. A better method t...
Gespeichert in:
Veröffentlicht in: | Engineering, technology & applied science research technology & applied science research, 2022-12, Vol.12 (6), p.9477-9482 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Utility companies always struggle with the High Impedance Fault (HIF) in the electrical distribution systems. In this article, the current signal is seen in situations involving 10,400 different samples, with and without HIF, like linear, non-linear load, and capacitance switching. A better method that processes signals very fast and with low sample rates, requiring less memory and computational labor, is demonstrated by Mathematical Morphology (MM). For HIF identification, Deep Convolution Neural Networks (DCNNs) are being developed. This paper presents a novel method for signal processing with low sample rates, high signal processing speed, and low computational and memory requirements. The suggested six-layer DCNN is compared with other models, such as the four-layer and eight-layer DCNN models and the results are discussed. |
---|---|
ISSN: | 2241-4487 1792-8036 |
DOI: | 10.48084/etasr.5288 |