Road Segmentation in High-Resolution Images Using Deep Residual Networks

Automatic road detection from remote sensing images is a vital application for traffic management, urban planning, and disaster management. The presence of occlusions like shadows of buildings, trees, and flyovers in high-resolution images and miss-classifications in databases create obstacles in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2022-12, Vol.12 (6), p.9654-9660
Hauptverfasser: Patil, D., Jadhav, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic road detection from remote sensing images is a vital application for traffic management, urban planning, and disaster management. The presence of occlusions like shadows of buildings, trees, and flyovers in high-resolution images and miss-classifications in databases create obstacles in the road detection task. Therefore, an automatic road detection system is required to detect roads in the presence of occlusions. This paper presents a deep convolutional neural network to address the problem of road detection, consisting of an encoder-decoder architecture. The architecture contains a U-Network with residual blocks. U-Network allows the transfer of low-level features to the high-level, helping the network to learn low-level details. Residual blocks help maintain the network's training performance, which may deteriorate due to a deep network. The encoder and decoder structures generate a feature map and classify pixels into road and non-road classes, respectively. Experimentation was performed on the Massachusetts road dataset. The results showed that the proposed model gave better accuracy than current state-of-the-art methods.
ISSN:2241-4487
1792-8036
DOI:10.48084/etasr.5247