An Experimental Study on the Control of Slotless Self-Bearing Motor Using Nonlinear Control

This article presents a Slotless Self-Bearing Motor (SSBM) with a six-phase coil stator instead of an iron core. The rotor consists of a permanent magnet and an encased iron yoke. The magnetic forces caused by the interplay between the stator currents and the magnetic field govern the rotational spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2022-08, Vol.12 (4), p.8942-8948
Hauptverfasser: Nhan, V. D., Bien, N. X., Dich, N. Q., Ha, V. T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a Slotless Self-Bearing Motor (SSBM) with a six-phase coil stator instead of an iron core. The rotor consists of a permanent magnet and an encased iron yoke. The magnetic forces caused by the interplay between the stator currents and the magnetic field govern the rotational speed and radial position of the rotor. An SSBM mathematical model and its control method are also included in this study. This motor is controlled by field-oriented control. Theoretical analysis of magnetic force and moment characteristics is performed, and a control approach is provided. Sliding-mode control is a control technique that is simple, and effective and is used to assist the control system in approaching the reference value. It is also widely utilized to control the position and speed of the motor. The findings were constructed and validated using experiment-confirmed analytical data to prove the proposed control strategy.
ISSN:2241-4487
1792-8036
DOI:10.48084/etasr.4997