Composite Feature Extraction and Classification for Fusion of Palm-Print and Iris Biometric Traits

Palm-print and iris biometric traits fusion are implemented in this paper. The region of interest (ROI) of a palm is extracted by using the valley detection algorithm and the ROI of an iris is extracted based on the neighbor-pixels value algorithm (NPVA). Statistical local binary pattern (SLBP) is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2019-02, Vol.9 (1), p.3807-3813
Hauptverfasser: Alsubari, A., Hannan, S. A., Alzahrani, M., Ramteke, R. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Palm-print and iris biometric traits fusion are implemented in this paper. The region of interest (ROI) of a palm is extracted by using the valley detection algorithm and the ROI of an iris is extracted based on the neighbor-pixels value algorithm (NPVA). Statistical local binary pattern (SLBP) is applied to extract the local features of palm and iris. For enhancing the palm features, a combination of histogram of oriented gradient (HOG) and discrete cosine transform (DCT) is applied. Gabor-Zernike moment is used to extract the iris features. This experimentation was carried out in two modes: verification and identification. The Euclidean distance is used in the verification system. In the identification system, the fuzzy-based classifier was proposed along with built-in classification functions in MATLAB. CASIA datasets of palm and iris were used in this research work. The proposed system accuracy was found to be satisfactory.
ISSN:2241-4487
1792-8036
DOI:10.48084/etasr.2500