Feature Set Fusion for Spoof Iris Detection

Iris recognition is considered as one of the most promising noninvasive biometric systems providing automated human identification. Numerous programs, like unique ID program in India - Aadhar, include iris biometric to provide distinctive identity identification to citizens. The active area is usual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering, technology & applied science research technology & applied science research, 2018-04, Vol.8 (2), p.2859-2863
Hauptverfasser: Suvarchala, P. V. L., Srinivas Kumar, S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iris recognition is considered as one of the most promising noninvasive biometric systems providing automated human identification. Numerous programs, like unique ID program in India - Aadhar, include iris biometric to provide distinctive identity identification to citizens. The active area is usually captured under non ideal imaging conditions. It usually suffers from poor brightness, low contrast, blur due to camera or subject's relative movement and eyelid eyelash occlusions. Besides the technical challenges, iris recognition started facing sophisticated threats like spoof attacks. Therefore it is vital that the integrity of such large scale iris deployments must be preserved. This paper presents the development of a new spoof resistant approach which exploits the statistical dependencies of both general eye and localized iris regions in textural domain using spatial gray level dependence matrix (SGLDM), gray level run length matrix (GLRLM) and contourlets in transform domain. We did experiments on publicly available fake and lens iris image databases. Correct classification rate obtained with ATVS-FIr iris database is 100% while it is 95.63% and 88.83% with IITD spoof iris databases respectively.
ISSN:2241-4487
1792-8036
DOI:10.48084/etasr.1859