On the Non-Commuting Graph of the Group U6n
Let G be a finite group. The non-commuting graph of G is a simple graph Γ(G) whose vertices are elements of G∖Z(G), where Z(G) is the center of G, and two distinct vertices a and b are joint by an edge if ab≠ba. In this paper, we study the non-commuting graph of the group U6n. The independent number...
Gespeichert in:
Veröffentlicht in: | Malaysian Journal of Mathematical Sciences 2024-09, Vol.18 (3), p.491-500 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a finite group. The non-commuting graph of G is a simple graph Γ(G) whose vertices are elements of G∖Z(G), where Z(G) is the center of G, and two distinct vertices a and b are joint by an edge if ab≠ba. In this paper, we study the non-commuting graph of the group U6n. The independent number, clique and chromatic numbers of the non-commuting graph of the group U6n, Γ(U6n), are determined. Additionally, the resolving polynomial, total eccentricity and independent polynomials of Γ(U6n) are computed. Finally, the detour and eccentric connectivity indices of Γ(U6n) are found. |
---|---|
ISSN: | 2289-750X 1823-8343 |
DOI: | 10.47836/mjms.18.3.02 |