A new generalization of Tzitzeica curves in arbitrary dimension
We generalize the notion of a Tzitzeica curve r in the nth dimension by using the constant ratio of the αth power of the Wronskians W(r′) of the derivative curve r′ and the βth power of the Wronskian W(r) of the original curve. In this context, the powers α and β may be seen as control parameters wh...
Gespeichert in:
Veröffentlicht in: | Analele ştiinţifice ale Universitatii "Al. I. Cuza" din Iaşi. Secţiunea 1a: Matematicǎ 2024, Vol.70 (1), p.89-99 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize the notion of a Tzitzeica curve r in the nth dimension by using
the constant ratio of the αth power of the Wronskians W(r′) of the derivative curve r′
and the βth power of the Wronskian W(r) of the original curve. In this context, the powers α and β may be seen as control parameters whose interplay determine special classes
of (α, β)-Tzitzeica curves. Our paper is intended to be example–oriented and, therefore,
several intriguing, new families of generalized Tzitzeica curves in the nth dimension, such
as the power and exponential curves, are introduced and discussed in detail. In particular, for n = 2, we show how the (α, β)-Tzitzeica curves are related to the second order
homogeneous linear Schr¨odinger equation. |
---|---|
ISSN: | 1221-8421 2344-4967 |
DOI: | 10.47743/anstim.2024.00007 |