Analysis, Symmetry and Asymptotic Behaviour of Solutions for the Belousov-Zhabotinsky Model

This research provides analytical insights in connection with the solutions of the Oregonator model, a refined iteration of the iconic Belousov-Zhabotinsky (BZ) reaction problem. This chemical process, initially observed by B. P. Belousov while replicating the Krebs cycle in vitro and later modified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Match (Mülheim) 2025, Vol.93 (1), p.187-222
Hauptverfasser: Rahman, Saeed ur, Díaz Palencia, José Luis, González, Julián Roa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research provides analytical insights in connection with the solutions of the Oregonator model, a refined iteration of the iconic Belousov-Zhabotinsky (BZ) reaction problem. This chemical process, initially observed by B. P. Belousov while replicating the Krebs cycle in vitro and later modified by Zhabotinsky using Fe-phenanthroline (ferroin), has become a hallmark example of non-linear dynamics, chaos theory, and has parallels in various biological systems. Our study systematically delves into the boundedness, regularity, and possible symmetries of weak solutions. We explore traveling waves using the Tanh-method, alongside examining asymptotic solutions entrenched in self-similar forms and exponential scaling leading to a Hamilton-Jacobi equation. This research emphasizes on mathematical arguments along with the dynamics of the involved chemical concentrations. We provide new forms of analytical solutions showing them in a comprehensive manner that connects with the interpretation of the Oregonator model and its broader implications in chemical systems.
ISSN:0340-6253
3009-4399
DOI:10.46793/match.93-1.187R