Discrete (G'/G )-expansion: a Method Used to Get Exact Solution of Fdde (Fractional Differential-difference Equation) Linked With Nltl (Non-linear Transmission Line)

Here, we have used the discrete (G'/G)-expansion procedure with the derivative operator MR-L (modified Riemann-Liouville) and FCT (fractional complex transform) to find the exact/analytical solution of an electrical transmission line which is non-linear. Results include solutions for integer an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Circuits, Systems and Signal Processing Systems and Signal Processing, 2021-05, Vol.15, p.453-460
Hauptverfasser: Mishra, Suchana, Kishore Mishra, Rabindra, Patnaik, Srikanta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we have used the discrete (G'/G)-expansion procedure with the derivative operator MR-L (modified Riemann-Liouville) and FCT (fractional complex transform) to find the exact/analytical solution of an electrical transmission line which is non-linear. Results include solutions for integer and fractional DDE. We consider two special cases of solutions: hyperbolic and trigonometric. Hyperbolic solutions indicate propagation of singular wave on the transmission line. Trigonometric solutions show propagation of complex wave.
ISSN:1998-4464
1998-4464
DOI:10.46300/9106.2021.15.49