Discrete (G'/G )-expansion: a Method Used to Get Exact Solution of Fdde (Fractional Differential-difference Equation) Linked With Nltl (Non-linear Transmission Line)
Here, we have used the discrete (G'/G)-expansion procedure with the derivative operator MR-L (modified Riemann-Liouville) and FCT (fractional complex transform) to find the exact/analytical solution of an electrical transmission line which is non-linear. Results include solutions for integer an...
Gespeichert in:
Veröffentlicht in: | International Journal of Circuits, Systems and Signal Processing Systems and Signal Processing, 2021-05, Vol.15, p.453-460 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we have used the discrete (G'/G)-expansion procedure with the derivative operator MR-L (modified Riemann-Liouville) and FCT (fractional complex transform) to find the exact/analytical solution of an electrical transmission line which is non-linear. Results include solutions for integer and fractional DDE. We consider two special cases of solutions: hyperbolic and trigonometric. Hyperbolic solutions indicate propagation of singular wave on the transmission line. Trigonometric solutions show propagation of complex wave. |
---|---|
ISSN: | 1998-4464 1998-4464 |
DOI: | 10.46300/9106.2021.15.49 |