An Optimized Method of Wind Speed Prediction with Support Vector Machine and Genetic Algorithm
Due to the randomness of wind speed and direction, the output power of wind turbine also has randomness. After large-scale wind power integration, it will bring a lot of adverse effects on the power quality of the power system, and also bring difficulties to the formulation of power system dispatchi...
Gespeichert in:
Veröffentlicht in: | International Journal of Circuits, Systems and Signal Processing Systems and Signal Processing, 2021-03, Vol.15, p.212-217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the randomness of wind speed and direction, the output power of wind turbine also has randomness. After large-scale wind power integration, it will bring a lot of adverse effects on the power quality of the power system, and also bring difficulties to the formulation of power system dispatching plan. In order to improve the prediction accuracy, an optimized method of wind speed prediction with support vector machine and genetic algorithm is put forward. Compared with other optimization methods, the simulation results show that the optimized genetic algorithm not only has good convergence speed, but also can find more suitable parameters for data samples. When the data is updated according to time series, the optimization range of vaccine and parameters is adaptively adjusted and updated. Therefore, as a new optimization method, the optimization method has certain theoretical significance and practical application value, and can be applied to other time series prediction models. |
---|---|
ISSN: | 1998-4464 1998-4464 |
DOI: | 10.46300/9106.2021.15.24 |