Diagonal F-splitting and Symbolic Powers of Ideals

Let $J$ be any ideal in a strongly $F$-regular, diagonally $F$-split ring $R$ essentially of finite type over an $F$-finite field. We show that $J^{s+t} \subseteq \tau(J^{s - \epsilon}) \tau(J^{t-\epsilon})$ for all $s, t, \epsilon > 0$ for which the formula makes sense. We use this to show a num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Épijournal de géométrie algébrique 2024-01, Vol.8
1. Verfasser: Smolkin, Daniel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $J$ be any ideal in a strongly $F$-regular, diagonally $F$-split ring $R$ essentially of finite type over an $F$-finite field. We show that $J^{s+t} \subseteq \tau(J^{s - \epsilon}) \tau(J^{t-\epsilon})$ for all $s, t, \epsilon > 0$ for which the formula makes sense. We use this to show a number of novel containments between symbolic and ordinary powers of prime ideals in this setting, which includes all determinantal rings and a large class of toric rings in positive characteristic. In particular, we show that $P^{(2hn)} \subseteq P^n$ for all prime ideals $P$ of height $h$ in such rings. Comment: Copy edited and formatted in the EpiGA journal's stylesheet
ISSN:2491-6765
2491-6765
DOI:10.46298/epiga.2023.9918