Lie pairs
Extending the theory of systems, we introduce a theory of Lie semialgebra ``pairs'' which parallels the classical theory of Lie algebras, but with a ``null set'' replacing $0$. A selection of examples is given. These Lie pairs comprise two categories in addition to the universal...
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics 2024-01, Vol.32 (2024), Issue 2... |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extending the theory of systems, we introduce a theory of Lie semialgebra
``pairs'' which parallels the classical theory of Lie algebras, but with a
``null set'' replacing $0$. A selection of examples is given. These Lie pairs
comprise two categories in addition to the universal algebraic definition, one
with ``weak Lie morphisms'' preserving null sums, and the other with
``$\preceq$-morphisms'' preserving a surpassing relation $\preceq$ that
replaces equality. We provide versions of the PBW (Poincare-Birkhoff-Witt)
Theorem in these three categories. |
---|---|
ISSN: | 2336-1298 2336-1298 |
DOI: | 10.46298/cm.12413 |