Lie pairs

Extending the theory of systems, we introduce a theory of Lie semialgebra ``pairs'' which parallels the classical theory of Lie algebras, but with a ``null set'' replacing $0$. A selection of examples is given. These Lie pairs comprise two categories in addition to the universal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematics 2024-01, Vol.32 (2024), Issue 2...
Hauptverfasser: Gatto, Letterio, Rowen, Louis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extending the theory of systems, we introduce a theory of Lie semialgebra ``pairs'' which parallels the classical theory of Lie algebras, but with a ``null set'' replacing $0$. A selection of examples is given. These Lie pairs comprise two categories in addition to the universal algebraic definition, one with ``weak Lie morphisms'' preserving null sums, and the other with ``$\preceq$-morphisms'' preserving a surpassing relation $\preceq$ that replaces equality. We provide versions of the PBW (Poincare-Birkhoff-Witt) Theorem in these three categories.
ISSN:2336-1298
2336-1298
DOI:10.46298/cm.12413