A New Data Fusion Method for Hybrid MMC/RNA Learning : Application to Automatic Speech Recognition

It is well known that traditional Hidden Markov Models (HMM) systems lead to a considerable improvement when more training data or more parameters are used. However, using more data with hybrid Hidden Markov Models and Artificial Neural Networks (HMM/ANN) models results in increased training times w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ARIMA 2005-09, Vol.3, Special Issue...
Hauptverfasser: Lazli, Lilia, Laskri, Mohamed Tayeb
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that traditional Hidden Markov Models (HMM) systems lead to a considerable improvement when more training data or more parameters are used. However, using more data with hybrid Hidden Markov Models and Artificial Neural Networks (HMM/ANN) models results in increased training times without improvements in performance. We developed in this work a new method based on automatically separating data into several sets and training several neural networks of Multi-Layer Perceptrons (MLP) type on each set. During the recognition phase, models are combined using several criteria (based on data fusion techniques) to provide the recognized word. We showed in this paper that this method significantly improved the recognition accuracy. This method was applied in an Arabic speech recognition system. This last is based on the one hand, on a fuzzy clustering (application of the fuzzy c-means algorithm) and of another share, on a segmentation at base of the genetic algorithms. De nombreuses expériences ont déjà montré qu'une forte amélioration du taux de reconnaissance des systèmes MMC (Modèles de Markov Cachés) traditionnels est observée lorsque plus de données d'apprentissage sont utilisées. En revanche, l'augmentation du nombre de données d'apprentissage pour les modèles hybrides MMC/RNA (Modèles de Markov cachés/Réseaux de Neurones Artificiels) s'accompagne d'une forte augmentation du temps nécessaire à l'apprentissage des modèles, mais pas ou peu des performances du système. Pour pallier cette limitation, nous rapportons dans ce papier les résultats obtenus avec une nouvelle méthode d'apprentissage basée sur la fusion de données. Cette méthode a été appliquée dans un système de reconnaissance de la parole arabe. Ce dernier est basé d'une part, sur une segmentation floue (application de l'algorithme c-moyennes floues) et d'une autre part, sur une segmentation à base des algorithmes génétiques.
ISSN:1638-5713
1638-5713
DOI:10.46298/arima.1842