Green synthesis, characterization, and antibacterial activity of silver nano particles against some bacterial isolates

Nanotechnology has emerged as a promising field for the development of novel antibacterial agents with reduced environmental impact. In this study, we present a novel green synthesis approach for the production of silver nanoparticles (AgNPs) using a plant-based extract. These AgNPs were subsequentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science world journal 2024-01, Vol.18 (4), p.653-661
Hauptverfasser: Gabi, Baba, Aliyu, Aishatu M., Orasugh, Jonathan Tersur, Abdullahi, Zakari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanotechnology has emerged as a promising field for the development of novel antibacterial agents with reduced environmental impact. In this study, we present a novel green synthesis approach for the production of silver nanoparticles (AgNPs) using a plant-based extract. These AgNPs were subsequently characterized using various analytical techniques, including UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). UV-Vis spectroscopy confirmed the formation of AgNPs by exhibiting a characteristic surface plasmon resonance peak at around 401 and 420 nm. XRD analysis revealed the crystalline nature of the AgNPs, with distinct diffraction peaks corresponding to the face-centered cubic structure of silver. TEM analysis demonstrated that the synthesized AgNPs were predominantly spherical in shape and exhibited an average size within the nanoscale range. FTIR analysis was employed to elucidate the potential bioactive compounds present in the plant extract responsible for the reduction and stabilization of AgNPs. Furthermore, we evaluated the antibacterial activity of these synthesized AgNPs against a panel of bacterial isolates. All the bacterial isolates were sensitive to the silver nanoparticles. Staphylococcus aureus as found to be most resistant, while E. coli as found to be the most sensitive.
ISSN:2756-391X
1597-6343
DOI:10.4314/swj.v18i4.18