Analysis of multi-distributed generation systems based on solar/biomass/natural gas/diesel energy resources for off-grid application

This study presents the analysis of multi-distributed generation systems for 20 off-grid homes in Ogun State based on the techno-environmental analysis planning (TEAP) approach. The technical aspect includes the load, DG capacities, energy generation/year, and the unmet energy demand (UED. The paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nigerian journal of technology 2022-11, Vol.41 (4), p.805-816
Hauptverfasser: Akinyele, D. O., Amole, A. O., Oyadoyin, O. E., Olabode, O. E., Okakwu, I. K., Abimbola, K. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents the analysis of multi-distributed generation systems for 20 off-grid homes in Ogun State based on the techno-environmental analysis planning (TEAP) approach. The technical aspect includes the load, DG capacities, energy generation/year, and the unmet energy demand (UED. The paper considers and compares different energy configurations such as the PV-based DG, the hybrid DGs: PV/biogas, PV/biogas/natural gas, PV/biogas/diesel, PV/diesel, and the diesel-based DGs. The environmental aspect examines the emissions produced by the DGs compared to a diesel-based DG system. The paper also examines the effect of temperature on the performance of the PV system. The simulation is based on a total daily demand of 99.04 kWh/d, and the solar, ambient temperature and the biomass data in Hybrid Optimization of Multiple Energy Resources (HOMER) environment. The size of the PV-based DG obtained is 36.9 kW, which generates 54,565 kWh/yr without temperature effect. Result shows that this value reduced to 48,268 kWh/yr with temperature effect and the value of UED is 7.84 %. The biogas, natural gas and diesel generators have the same size of 13.2 kW. The hybrid DGs achieve a UED of 0% implying 100 % system availability. Results further demonstrate that the mentioned hybrid DGs have CO2 emissions that range between 2.21 and 15, 448 kg/yr, compared to a value of 40, 273 kg/yr obtained when the homes are entirely run on a diesel-based DG. The study can help to understand energy systems analysis.
ISSN:0331-8443
2467-8821
DOI:10.4314/njt.v41i4.18