Minimal planes in asymptotically flat three-manifolds

In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Geometry 2022-03, Vol.120 (3)
Hauptverfasser: Mazet, Laurent, Rosenberg, Harold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of Differential Geometry
container_volume 120
creator Mazet, Laurent
Rosenberg, Harold
description In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.
doi_str_mv 10.4310/jdg/1649953568
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4310_jdg_1649953568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01768219v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1838-2e00d26fa16f47c6bdb17340652a1b6cf20d748bb9559f5af8c0eb078ec1d7633</originalsourceid><addsrcrecordid>eNpFkE1Lw0AYhPegYK1ePefqIe377neOpagtRLwoeFs2m12bsklKNgj596ZU9DQwzAzDQ8gDwoozhPWx_lqj5EUhmJD6iiwAKM2Bw-cNuU3pCIBcU70g4rXpmtbG7BRt51PWdJlNU3sa-7FxNsYpC9GO2XgYvM9b2zWhj3W6I9fBxuTvf3VJPp6f3re7vHx72W83Ze5QM51TD1BTGSzKwJWTVV2hYhykoBYr6QKFWnFdVYUQRRA2aAe-AqW9w1pJxpbk8bJ7sNGchvnoMJneNma3Kc3ZA1RSUyy-cc6uLlk39CkNPvwVEMwZipmhmH8o7AeKhlZq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Minimal planes in asymptotically flat three-manifolds</title><source>Project Euclid Complete</source><creator>Mazet, Laurent ; Rosenberg, Harold</creator><creatorcontrib>Mazet, Laurent ; Rosenberg, Harold</creatorcontrib><description>In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.</description><identifier>ISSN: 0022-040X</identifier><identifier>DOI: 10.4310/jdg/1649953568</identifier><language>eng</language><subject>Differential Geometry ; Mathematics</subject><ispartof>Journal of Differential Geometry, 2022-03, Vol.120 (3)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9581-0510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01768219$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazet, Laurent</creatorcontrib><creatorcontrib>Rosenberg, Harold</creatorcontrib><title>Minimal planes in asymptotically flat three-manifolds</title><title>Journal of Differential Geometry</title><description>In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>0022-040X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AYhPegYK1ePefqIe377neOpagtRLwoeFs2m12bsklKNgj596ZU9DQwzAzDQ8gDwoozhPWx_lqj5EUhmJD6iiwAKM2Bw-cNuU3pCIBcU70g4rXpmtbG7BRt51PWdJlNU3sa-7FxNsYpC9GO2XgYvM9b2zWhj3W6I9fBxuTvf3VJPp6f3re7vHx72W83Ze5QM51TD1BTGSzKwJWTVV2hYhykoBYr6QKFWnFdVYUQRRA2aAe-AqW9w1pJxpbk8bJ7sNGchvnoMJneNma3Kc3ZA1RSUyy-cc6uLlk39CkNPvwVEMwZipmhmH8o7AeKhlZq</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Mazet, Laurent</creator><creator>Rosenberg, Harold</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9581-0510</orcidid></search><sort><creationdate>202203</creationdate><title>Minimal planes in asymptotically flat three-manifolds</title><author>Mazet, Laurent ; Rosenberg, Harold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1838-2e00d26fa16f47c6bdb17340652a1b6cf20d748bb9559f5af8c0eb078ec1d7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazet, Laurent</creatorcontrib><creatorcontrib>Rosenberg, Harold</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Differential Geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazet, Laurent</au><au>Rosenberg, Harold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal planes in asymptotically flat three-manifolds</atitle><jtitle>Journal of Differential Geometry</jtitle><date>2022-03</date><risdate>2022</risdate><volume>120</volume><issue>3</issue><issn>0022-040X</issn><abstract>In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.</abstract><doi>10.4310/jdg/1649953568</doi><orcidid>https://orcid.org/0000-0002-9581-0510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-040X
ispartof Journal of Differential Geometry, 2022-03, Vol.120 (3)
issn 0022-040X
language eng
recordid cdi_crossref_primary_10_4310_jdg_1649953568
source Project Euclid Complete
subjects Differential Geometry
Mathematics
title Minimal planes in asymptotically flat three-manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20planes%20in%20asymptotically%20flat%20three-manifolds&rft.jtitle=Journal%20of%20Differential%20Geometry&rft.au=Mazet,%20Laurent&rft.date=2022-03&rft.volume=120&rft.issue=3&rft.issn=0022-040X&rft_id=info:doi/10.4310/jdg/1649953568&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01768219v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true