Minimal planes in asymptotically flat three-manifolds
In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigm...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Geometry 2022-03, Vol.120 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points. |
---|---|
ISSN: | 0022-040X |
DOI: | 10.4310/jdg/1649953568 |