Отражающиеся процессы Леви и порождаемые ими семейства линейных операторов

В работе рассматриваются одномерные марковские процессы специального вида, которые являются процессами Леви, принимающими значения на конечном интервале и отражающимися от граничных точек. Показано, что в этом случае кроме стандартной полугруппы операторов, порожденных марковским процессом, возникае...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Teorija verojatnostej i ee primenenija 2019, Vol.64 (3), p.417-441
Hauptverfasser: Ibragimov, Il'dar Abdullovich, Smorodina, Natal'ya Vasil'evna, Faddeev, Mikhail Mikhailovich
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:В работе рассматриваются одномерные марковские процессы специального вида, которые являются процессами Леви, принимающими значения на конечном интервале и отражающимися от граничных точек. Показано, что в этом случае кроме стандартной полугруппы операторов, порожденных марковским процессом, возникает еще семейство "граничных" случайных операторов, переводящих функции, заданные на границе интервала, в элементы пространства $L_2$ на всем интервале. В случае, когда исходный процесс является винеровским, эти операторы выражаются через локальное время процесса на границе интервала. The paper is concerned with special one-dimensional Markov processes, which are Lévy processes defined on a finite interval and reflected from the boundary points of the interval. It is shown that in this setting, in addition to the standard semigroup of operators generated by the Markov process, there also appears the family of "boundary" random operators that send functions defined on the boundary of the interval to elements of the space $L_2$ on the entire interval. In the case when the original process is a Wiener process, we show that these operators can be expressed in terms of the local time of the process on the boundary of the interval.
ISSN:0040-361X
2305-3151
DOI:10.4213/tvp5254