О некоторых свойствах динамики коллапса в массивной и безмассовой релятивистской теории гравитации

Проведено численное и аналитическое исследование динамики коллапса в массивной и безмассовой релятивистской теории гравитации для разных уравнений состояния вещества. Это позволило уточнить характер динамики коллапса в случае массивной релятивистской теории гравитации, в частности, была установлена...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Teoretičeskaja i matematičeskaja fizika 2016-04, Vol.187 (1), p.114-126
Hauptverfasser: Antipin, Konstantin Vladislavovich, Dubikovsky, Andrei, Silaev, Petr Konstantinovich
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Проведено численное и аналитическое исследование динамики коллапса в массивной и безмассовой релятивистской теории гравитации для разных уравнений состояния вещества. Это позволило уточнить характер динамики коллапса в случае массивной релятивистской теории гравитации, в частности, была установлена зависимость от массы гравитона для времени достижения точки поворота (т. е. точки перехода от сжатия к расширению). Для безмассовой релятивистской теории гравитации уточнена связь между известным решением общей теории относительности для холодной пыли и соответствующим решением релятивистской теории гравитации. Показано, что гармоническое время сингулярно, в том числе для гладкого распределения материи, соответствующего компактному объекту с существенно размытой границей, т. е. решение Оппенгеймера-Снайдера не может быть целиком вложено в пространство Минковского. Кроме того, исследовано влияние ненулевого давления на динамику коллапса. We investigate the dynamics of collapse in massive and massless relativistic theories of gravity for different equations of state for matter numerically and analytically. This allows clarifying the character of the collapse dynamics in the massive relativistic theory of gravity; in particular, we establish the graviton-mass dependence of the time of reaching the turning point (i.e., the point of transition from contraction to expansion). For the massless relativistic theory of gravity, we clarify the relation between the known general relativity solution for cold dust and the corresponding solution in the relativistic theory of gravity. We show that the harmonic time is singular, including the case of a smooth distribution of matter corresponding to a compact object with a strongly diffused boundary, which means that the Oppenheimer-Snyder solution cannot be fully embedded into the Minkowski space. We in addition investigate the effect of a nonzero pressure on the collapse dynamics.
ISSN:0564-6162
2305-3135
DOI:10.4213/tmf8988