О спектре гамильтониана Ландау, возмущенного периодическим электрическим потенциалом

Исследуется спектр гамильтониана Ландау, возмущенного периодическим электрическим потенциалом $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)$, если для потока однородного магнитного поля $B>0$ через элементарную ячейку $K$ решетки периодов потенциала $V$ выполняется условие $(2\pi)^{-1}Bv(K)=Q^{...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matematic̆eskij sbornik (Moskva) 2023, Vol.214 (12), p.76-105
1. Verfasser: Danilov, Leonid Ivanovich
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Исследуется спектр гамильтониана Ландау, возмущенного периодическим электрическим потенциалом $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)$, если для потока однородного магнитного поля $B>0$ через элементарную ячейку $K$ решетки периодов потенциала $V$ выполняется условие $(2\pi)^{-1}Bv(K)=Q^{-1}$, $Q\in \mathbb N $, где $v(K)$ - площадь элементарной ячейки $K$. Для произвольных периодических потенциалов $V\in L^2_{\mathrm {loc}}(\mathbb R^2;\mathbb R)$ с нулевым средним значением $V_0=0$ доказано отсутствие в спектре собственных значений, не совпадающих с уровнями Ландау. Также для периодических потенциалов $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)\setminus C^{\infty}(\mathbb R^2;\mathbb R)$ доказана абсолютная непрерывность спектра. Библиография: 23 названия.
ISSN:0368-8666
2305-2783
DOI:10.4213/sm9833