On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton

Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2023, Vol.214 (8), p.1163-1190
Hauptverfasser: Farkas, Balint, Nagy, Bela, Révész, Szilárd György
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1190
container_issue 8
container_start_page 1163
container_title Sbornik. Mathematics
container_volume 214
creator Farkas, Balint
Nagy, Bela
Révész, Szilárd György
description Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev. Bibliography: 25 titles.
doi_str_mv 10.4213/sm9714e
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4213_sm9714e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4213_sm9714e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-81502b688140fec9b2755fee279961d44c9659ebefe2c8838f7a530f07f466bf3</originalsourceid><addsrcrecordid>eNotkEFPAyEYRInRxFqNf4GbJxRYYOGoG1tNmvRSzxvY_XDb7EIDWNN_r9WeZjJ5mcND6J7RR8FZ9ZQnUzMBF2jGhNJEaMovfztVgkjF1DW6yXlHKZWc6RnarAMuA-Bv2H4OBXr8Enc2xANpBnDHPMAB71N0I0zYhv4PzV8Tjh6XZEMebYGMJyhD7E_jAkKJ4RZdeTtmuDvnHH0sXjfNG1mtl-_N84p0nNNCNJOUO6U1E9RDZxyvpfQAvDZGsV6IzihpwIEH3mldaV9bWVFPay-Ucr6ao4f_3y7FnBP4dp-2k03HltH2JKM9y6h-AH2lUhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton</title><source>Alma/SFX Local Collection</source><creator>Farkas, Balint ; Nagy, Bela ; Révész, Szilárd György</creator><creatorcontrib>Farkas, Balint ; Nagy, Bela ; Révész, Szilárd György</creatorcontrib><description>Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev. Bibliography: 25 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.4213/sm9714e</identifier><language>eng</language><ispartof>Sbornik. Mathematics, 2023, Vol.214 (8), p.1163-1190</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-81502b688140fec9b2755fee279961d44c9659ebefe2c8838f7a530f07f466bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Farkas, Balint</creatorcontrib><creatorcontrib>Nagy, Bela</creatorcontrib><creatorcontrib>Révész, Szilárd György</creatorcontrib><title>On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton</title><title>Sbornik. Mathematics</title><description>Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev. Bibliography: 25 titles.</description><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEFPAyEYRInRxFqNf4GbJxRYYOGoG1tNmvRSzxvY_XDb7EIDWNN_r9WeZjJ5mcND6J7RR8FZ9ZQnUzMBF2jGhNJEaMovfztVgkjF1DW6yXlHKZWc6RnarAMuA-Bv2H4OBXr8Enc2xANpBnDHPMAB71N0I0zYhv4PzV8Tjh6XZEMebYGMJyhD7E_jAkKJ4RZdeTtmuDvnHH0sXjfNG1mtl-_N84p0nNNCNJOUO6U1E9RDZxyvpfQAvDZGsV6IzihpwIEH3mldaV9bWVFPay-Ucr6ao4f_3y7FnBP4dp-2k03HltH2JKM9y6h-AH2lUhc</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Farkas, Balint</creator><creator>Nagy, Bela</creator><creator>Révész, Szilárd György</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton</title><author>Farkas, Balint ; Nagy, Bela ; Révész, Szilárd György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-81502b688140fec9b2755fee279961d44c9659ebefe2c8838f7a530f07f466bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farkas, Balint</creatorcontrib><creatorcontrib>Nagy, Bela</creatorcontrib><creatorcontrib>Révész, Szilárd György</creatorcontrib><collection>CrossRef</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farkas, Balint</au><au>Nagy, Bela</au><au>Révész, Szilárd György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2023</date><risdate>2023</risdate><volume>214</volume><issue>8</issue><spage>1163</spage><epage>1190</epage><pages>1163-1190</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev. Bibliography: 25 titles.</abstract><doi>10.4213/sm9714e</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2023, Vol.214 (8), p.1163-1190
issn 1064-5616
1468-4802
language eng
recordid cdi_crossref_primary_10_4213_sm9714e
source Alma/SFX Local Collection
title On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20weighted%20Bojanov-Chebyshev%20problem%20and%20the%20sum%20of%20translates%20method%20of%20Fenton&rft.jtitle=Sbornik.%20Mathematics&rft.au=Farkas,%20Balint&rft.date=2023&rft.volume=214&rft.issue=8&rft.spage=1163&rft.epage=1190&rft.pages=1163-1190&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.4213/sm9714e&rft_dat=%3Ccrossref%3E10_4213_sm9714e%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true