On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton

Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2023, Vol.214 (8), p.1163-1190
Hauptverfasser: Farkas, Balint, Nagy, Bela, Révész, Szilárd György
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Minimax and maximin problems are investigated for a special class of functions on the interval $[0,1]$. These functions are sums of translates of positive multiples of one kernel function and a very general external field function. Due to our very general setting the minimax, equioscillation and characterization results obtained extend those of Bojanov, Fenton, Hardin, Kendall, Saff, Ambrus, Ball and Erdélyi. Moreover, we discover a surprising intertwining phenomenon of interval maxima, which provides new information even in the most classical extremal problem of Chebyshev. Bibliography: 25 titles.
ISSN:1064-5616
1468-4802
DOI:10.4213/sm9714e