Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth
An elliptic boundary-value problem with discontinuous nonlinearity of exponential growth at infinity is investigated. The existence theorem for a weak semiregular solution of this problem is deduced by the variational method. The semiregularity of a solution means that its values are points of conti...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2022, Vol.213 (7), p.1004-1019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An elliptic boundary-value problem with discontinuous nonlinearity of exponential growth at infinity is investigated. The existence theorem for a weak semiregular solution of this problem is deduced by the variational method. The semiregularity of a solution means that its values are points of continuity of the nonlinearity with respect to the phase variable almost everywhere in the domain where the boundary-value problem is considered. The variational approach used is based on the concept of a quasipotential operator, unlike the traditional approach, which uses Clarke's generalized derivative.
Bibliography: 29 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.4213/sm9655e |