Бирациональная геометрия двойных пространств Фано индекса 2 с особенностями

В работе дано описание бирациональной геометрии двойных пространств Фано $V\stackrel{\sigma}{\to}{\mathbb P}^{M+1}$ индекса 2 размерности $\geqslant 8$, имеющих не более чем квадратичные особенности ранга $\geqslant 8$ и удовлетворяющих некоторым дополнительным условиям общности положения: доказано,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matematic̆eskij sbornik (Moskva) 2021, Vol.212 (4), p.113-130
1. Verfasser: Pukhlikov, Aleksandr Valentinovich
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:В работе дано описание бирациональной геометрии двойных пространств Фано $V\stackrel{\sigma}{\to}{\mathbb P}^{M+1}$ индекса 2 размерности $\geqslant 8$, имеющих не более чем квадратичные особенности ранга $\geqslant 8$ и удовлетворяющих некоторым дополнительным условиям общности положения: доказано, что эти многообразия не имеют структур рационально связного расслоения над базой размерности $\geqslant 2$, что любое бирациональное отображение $\chi\colon V\dashrightarrow V'$ на тотальное пространство расслоения Мори $V'/{\mathbb P}^1$ индуцирует изоморфизм $V^+\cong V'$ раздутия $V^+$ многообразия $V$ вдоль $\sigma^{-1}(P)$, где $P\subset {\mathbb P}^{M+1}$ есть некоторое линейное подпространство коразмерности 2, и что любое бирациональное отображение многообразия $V$ на многообразие Фано $V'$ с ${\mathbb Q}$-факториальными терминальными особенностями и числом Пикара 1 есть изоморфизм. Дана явная нижняя оценка коразмерности множества многообразий $V$, имеющих худшие особенности или не удовлетворяющих условиям общности положения, квадратичная по $M$. Доказательство использует метод максимальных особенностей и усиленное $4n^2$-неравенство для самопересечения подвижной линейной системы. Библиография: 20 названий. We describe the birational geometry of Fano double spaces $V\stackrel{\sigma}{\to}{\mathbb P}^{M+1}$ of index 2 and dimension ${\geqslant 8}$ with at most quadratic singularities of rank ${\geqslant 8}$, satisfying certain additional conditions of general position: we prove that these varieties have no structures of a rationally connected fibre space over a base of dimension ${\geqslant2}$, that every birational map $\chi\colon V\dashrightarrow V'$ onto the total space of a Mori fibre space $V'/{\mathbb P}^1$ induces an isomorphism $V^+\cong V'$ of the blow-up $V^+$ of $V$ along $\sigma^{-1}(P)$, where $P\subset {\mathbb P}^{M+1}$ is a linear subspace of codimension 2, and that every birational map of $V$ onto a Fano variety $V'$ with ${\mathbb Q}$-factorial terminal singularities and Picard number 1 is an isomorphism. We give an explicit lower estimate, quadratic in $M$, for the codimension of the set of varieties $V$ that have worse singularities or do not satisfy the conditions of general position. The proof makes use of the method of maximal singularities and the improved $4n^2$-inequality for the self-intersection of a mobile linear system. Bibliography: 20 titles.
ISSN:0368-8666
2305-2783
DOI:10.4213/sm9363