Об оценках объема нулей голоморфной функции, зависящей от комплексного параметра
Для голоморфной функции $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, дается равномерная по $\sigma $ оценка объема нулей множества $z\colon f(\sigma,z)=0\}$. Такие оценки очень полезны в вопросах изучения осциллирующих интегралов $$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma...
Gespeichert in:
Veröffentlicht in: | Matematic̆eskij sbornik (Moskva) 2021, Vol.212 (11), p.109-115 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | rus |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Для голоморфной функции $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$,
дается равномерная по $\sigma $ оценка объема нулей множества $z\colon f(\sigma,z)=0\}$.
Такие оценки очень полезны в вопросах изучения осциллирующих интегралов
$$
J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)} dx
$$
при $\lambda \to \infty $. Здесь
$a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ -
так называемая амплитудная функция и $\Phi (\sigma, x)$ - функция фазы.
Библиография: 9 названий.
Given a holomorphic function $f(\sigma,z)$, $\sigma\in\mathbb{C}^{m}$, $z\in\mathbb{C}^{n}$, an estimate for the volume of the zero set $z\colon f(\sigma,z)=0\}$ is presented which holds uniformly in $\sigma $. Such estimates are quite useful in investigations of oscillatory integrals of the form $$ J(\lambda,\sigma)=\int_{\mathbb{R}^{n} }a(\sigma, x)e^{i\lambda \Phi (\sigma, x)} dx $$ as $\lambda \to \infty $. Here $a(\sigma, x)\in C_{0}^{\infty } (\mathbb{R}^{n} \times\mathbb{R}^{m})$ is a so-called amplitude function and $\Phi (\sigma, x)$ is a phase function.
Bibliography: 9 titles. |
---|---|
ISSN: | 0368-8666 2305-2783 |
DOI: | 10.4213/sm9328 |