Приближение наипростейшими дробями в неограниченных областях
Для неограниченных односвязных областей $D$ комплексной плоскости, ограниченных несколькими простыми кривыми с регулярным асимптотическим поведением на бесконечности, получены условия, необходимые или достаточные для того, чтобы наипростейшие дроби (логарифмические производные многочленов) с полюсам...
Gespeichert in:
Veröffentlicht in: | Matematic̆eskij sbornik (Moskva) 2021, Vol.212 (4), p.3-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | rus |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Для неограниченных односвязных областей $D$ комплексной плоскости, ограниченных несколькими простыми кривыми с регулярным асимптотическим поведением на бесконечности, получены условия, необходимые или достаточные для того, чтобы наипростейшие дроби (логарифмические производные многочленов) с полюсами на границе $D$ были плотны в пространстве функций, голоморфных в $D$ (с топологией равномерной сходимости на компактах из $D$). В случае полосы $\Pi$, ограниченной двумя параллельными прямыми, получены оценки скорости сходимости к нулю внутри $\Pi$ наипростейших дробей с полюсами на границе $\Pi$ и с одним фиксированным полюсом.
Библиография: 16 названий.
For unbounded simply connected domains $D$ in the complex plane, bounded by several simple curves with regular asymptotic behaviour at infinity, we obtain necessary conditions and sufficient conditions for simple partial fractions (logarithmic derivatives of polynomials) with poles on the boundary of $D$ to be dense in the space of holomorphic functions in $D$ (with the topology of uniform convergence on compact subsets of $D$). In the case of a strip $\Pi$ bounded by two parallel lines, we give estimates for the convergence rate to zero in the interior of $\Pi$ of simple partial fractions with poles on the boundary of $\Pi$ and with one fixed pole.
Bibliography: 16 titles. |
---|---|
ISSN: | 0368-8666 2305-2783 |
DOI: | 10.4213/sm9298 |