Сходимость лучевых последовательностей аппроксимаций Фробениуса-Паде

Пусть $\widehat\sigma$ - преобразование Коши комплекснозначной борелевской меры $\sigma$ и $\{p_n\}$ - система ортонормированных по мере $\mu$, $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$, многочленов. Аппроксимацией Фробениуса-Паде с индексом $(m,n)$ функции $\widehat\sigm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Matematic̆eskij sbornik (Moskva) 2017, Vol.208 (3), p.4-27
Hauptverfasser: Aptekarev, Alexander Ivanovich, Bogolyubskii, Aleksei Igorevich, Yattselev, Maxim
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Пусть $\widehat\sigma$ - преобразование Коши комплекснозначной борелевской меры $\sigma$ и $\{p_n\}$ - система ортонормированных по мере $\mu$, $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$, многочленов. Аппроксимацией Фробениуса-Паде с индексом $(m,n)$ функции $\widehat\sigma$ называют рациональную функцию $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, такую, что первые $m+n+1$ коэффициентов разложения Фурье по многочленам $p_n$ функции остатка $Q\widehat\sigma-P$ обращаются в нуль. Мы исследуем сходимость аппроксимаций Фробениуса-Паде к $\widehat\sigma$ вдоль лучевых последовательностей $n/(n+m+1)\to c>0$, $n-1\leq m$. Носители мер $\mu$ и $\sigma$ принадлежат отрезкам действительной оси, а соответствующие этим мерам тригонометрические веса являются голоморфными, не обращающимися в нуль на отрезках, функциями. Библиография: 30 названий. Let $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences $n/(n+m+1)\to c>0$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions. Bibliography: 30 titles.
ISSN:0368-8666
2305-2783
DOI:10.4213/sm8632