Операторно липшицевы функции

Целью обзора является подробное изучение операторно липшицевых функций. Непрерывная функция $f$ на вещественной прямой $\mathbb{R}$ называется операторно липшицевой, если $\|f(A)-f(B)\|\leqslantconst\|A-B\|$ для любых самосопряжeнных операторов $A$ и $B$. Приводятся достаточные условия и необходимые...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Uspehi matematičeskih nauk 2016, Vol.71 (4(430)), p.3-106
Hauptverfasser: Aleksandrov, Alexei Borisovich, Peller, Vladimir Vsevolodovich
Format: Artikel
Sprache:rus
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Целью обзора является подробное изучение операторно липшицевых функций. Непрерывная функция $f$ на вещественной прямой $\mathbb{R}$ называется операторно липшицевой, если $\|f(A)-f(B)\|\leqslantconst\|A-B\|$ для любых самосопряжeнных операторов $A$ и $B$. Приводятся достаточные условия и необходимые условия для операторной липшицевости. Изучается также класс операторно дифференцируемых функций на $\mathbb{R}$. Далее рассматривается класс операторно липшицевых функций на замкнутых подмножествах плоскости, а также вводится класс коммутаторно липшицевых функций на таких подмножествах. Для изучения этих классов функций важную роль играют двойные операторные интегралы и мультипликаторы Шура. Библиография: 77 названий. The goal of this survey is a comprehensive study of operator Lipschitz functions. A continuous function $f$ on the real line $\mathbb{R}$ is said to be operator Lipschitz if $\|f(A)-f(B)\|\leqslant\mathrm{const}\|A-B\|$ for arbitrary self-adjoint operators $A$ and $B$. Sufficient conditions and necessary conditions are given for operator Lipschitzness. The class of operator differentiable functions on $\mathbb{R}$ is also studied. Further, operator Lipschitz functions on closed subsets of the plane are considered, and the class of commutator Lipschitz functions on such subsets is introduced. An important role for the study of such classes of functions is played by double operator integrals and Schur multipliers. Bibliography: 77 titles.
ISSN:0042-1316
2305-2872
DOI:10.4213/rm9729