Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions

Left-invariant optimal control problems on Lie groups are an important class of problems with a large symmetry group. They are theoretically interesting because they can often be investigated in full and general laws can be studied by using these model problems. In particular, problems on nilpotent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematical surveys 2023, Vol.78 (1), p.65-163
1. Verfasser: Sachkov, Yurii Leonidovich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Left-invariant optimal control problems on Lie groups are an important class of problems with a large symmetry group. They are theoretically interesting because they can often be investigated in full and general laws can be studied by using these model problems. In particular, problems on nilpotent Lie groups provide a fundamental nilpotent approximation to general problems. Also, left-invariant problems often arise in applications such as classical and quantum mechanics, geometry, robotics, visual perception models, and image processing. The aim of this paper is to present a survey of the main concepts, methods, and results pertaining to left-invariant optimal control problems on Lie groups that can be integrated by elliptic functions. The focus is on describing extremal trajectories and their optimality, the cut time and cut locus, and optimal synthesis. Bibliography: 162 titles.
ISSN:0036-0279
1468-4829
DOI:10.4213/rm10063e